mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-12 19:20:36 +08:00
bug #1574: implement "sparse_matrix =,+=,-= diagonal_matrix" with smart insertion strategies of missing diagonal coeffs.
This commit is contained in:
parent
803fa79767
commit
f489f44519
@ -207,6 +207,22 @@ class CompressedStorage
|
||||
return m_values[id];
|
||||
}
|
||||
|
||||
void moveChunk(Index from, Index to, Index chunkSize)
|
||||
{
|
||||
eigen_internal_assert(to+chunkSize <= m_size);
|
||||
if(to>from && from+chunkSize>to)
|
||||
{
|
||||
// move backward
|
||||
internal::smart_memmove(m_values+from, m_values+from+chunkSize, m_values+to);
|
||||
internal::smart_memmove(m_indices+from, m_indices+from+chunkSize, m_indices+to);
|
||||
}
|
||||
else
|
||||
{
|
||||
internal::smart_copy(m_values+from, m_values+from+chunkSize, m_values+to);
|
||||
internal::smart_copy(m_indices+from, m_indices+from+chunkSize, m_indices+to);
|
||||
}
|
||||
}
|
||||
|
||||
void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
|
||||
{
|
||||
Index k = 0;
|
||||
|
@ -246,35 +246,22 @@ struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Sparse>
|
||||
{
|
||||
typedef typename DstXprType::StorageIndex StorageIndex;
|
||||
typedef typename DstXprType::Scalar Scalar;
|
||||
typedef Array<StorageIndex,Dynamic,1> ArrayXI;
|
||||
typedef Array<Scalar,Dynamic,1> ArrayXS;
|
||||
template<int Options>
|
||||
static void run(SparseMatrix<Scalar,Options,StorageIndex> &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||||
{
|
||||
Index dstRows = src.rows();
|
||||
Index dstCols = src.cols();
|
||||
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
|
||||
dst.resize(dstRows, dstCols);
|
||||
|
||||
Index size = src.diagonal().size();
|
||||
dst.makeCompressed();
|
||||
dst.resizeNonZeros(size);
|
||||
Map<ArrayXI>(dst.innerIndexPtr(), size).setLinSpaced(0,StorageIndex(size)-1);
|
||||
Map<ArrayXI>(dst.outerIndexPtr(), size+1).setLinSpaced(0,StorageIndex(size));
|
||||
Map<ArrayXS>(dst.valuePtr(), size) = src.diagonal();
|
||||
}
|
||||
template<int Options, typename AssignFunc>
|
||||
static void run(SparseMatrix<Scalar,Options,StorageIndex> &dst, const SrcXprType &src, const AssignFunc &func)
|
||||
{ dst._assignDiagonal(src.diagonal(), func); }
|
||||
|
||||
template<typename DstDerived>
|
||||
static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||||
{
|
||||
dst.diagonal() = src.diagonal();
|
||||
}
|
||||
{ dst.derived().diagonal() = src.diagonal(); }
|
||||
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||||
{ dst.diagonal() += src.diagonal(); }
|
||||
template<typename DstDerived>
|
||||
static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||||
{ dst.derived().diagonal() += src.diagonal(); }
|
||||
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||||
{ dst.diagonal() -= src.diagonal(); }
|
||||
template<typename DstDerived>
|
||||
static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||||
{ dst.derived().diagonal() -= src.diagonal(); }
|
||||
};
|
||||
} // end namespace internal
|
||||
|
||||
|
@ -502,6 +502,113 @@ class SparseMatrix
|
||||
m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal assign \a diagXpr to the diagonal of \c *this
|
||||
* There are different strategies:
|
||||
* 1 - if *this is overwritten (Func==assign_op) or *this is empty, then we can work treat *this as a dense vector expression.
|
||||
* 2 - otherwise, for each diagonal coeff,
|
||||
* 2.a - if it already exists, then we update it,
|
||||
* 2.b - otherwise, if *this is uncompressed and that the current inner-vector has empty room for at least 1 element, then we perform an in-place insertion.
|
||||
* 2.c - otherwise, we'll have to reallocate and copy everything, so instead of doing so for each new element, it is recorded in a std::vector.
|
||||
* 3 - at the end, if some entries failed to be inserted in-place, then we alloc a new buffer, copy each chunk at the right position, and insert the new elements.
|
||||
*
|
||||
* TODO: some piece of code could be isolated and reused for a general in-place update strategy.
|
||||
* TODO: if we start to defer the insertion of some elements (i.e., case 2.c executed once),
|
||||
* then it *might* be better to disable case 2.b since they will have to be copied anyway.
|
||||
*/
|
||||
template<typename DiagXpr, typename Func>
|
||||
void _assignDiagonal(const DiagXpr diagXpr, const Func& assignFunc)
|
||||
{
|
||||
struct Record {
|
||||
Record(Index a_i, Index a_p) : i(a_i), p(a_p) {}
|
||||
Index i;
|
||||
Index p;
|
||||
};
|
||||
|
||||
Index n = diagXpr.size();
|
||||
|
||||
const bool overwrite = internal::is_same<Func, internal::assign_op<Scalar,Scalar> >::value;
|
||||
if(overwrite)
|
||||
{
|
||||
if((this->rows()!=n) || (this->cols()!=n))
|
||||
this->resize(n, n);
|
||||
}
|
||||
|
||||
if(m_data.size()==0 || overwrite)
|
||||
{
|
||||
typedef Array<StorageIndex,Dynamic,1> ArrayXI;
|
||||
this->makeCompressed();
|
||||
this->resizeNonZeros(n);
|
||||
Eigen::Map<ArrayXI>(this->innerIndexPtr(), n).setLinSpaced(0,StorageIndex(n)-1);
|
||||
Eigen::Map<ArrayXI>(this->outerIndexPtr(), n+1).setLinSpaced(0,StorageIndex(n));
|
||||
Eigen::Map<Array<Scalar,Dynamic,1> > values = this->coeffs();
|
||||
values.setZero();
|
||||
internal::call_assignment_no_alias(values, diagXpr, assignFunc);
|
||||
}
|
||||
else
|
||||
{
|
||||
bool isComp = isCompressed();
|
||||
internal::evaluator<DiagXpr> diaEval(diagXpr);
|
||||
std::vector<Record> newEntries;
|
||||
|
||||
// 1 - try in-place update and record insertion failures
|
||||
for(Index i = 0; i<n; ++i)
|
||||
{
|
||||
internal::LowerBoundIndex lb = this->lower_bound(i,i);
|
||||
Index p = lb.value;
|
||||
if(lb.found)
|
||||
{
|
||||
// the coeff already exists
|
||||
assignFunc.assignCoeff(m_data.value(p), diaEval.coeff(i));
|
||||
}
|
||||
else if((!isComp) && m_innerNonZeros[i] < (m_outerIndex[i+1]-m_outerIndex[i]))
|
||||
{
|
||||
// non compressed mode with local room for inserting one element
|
||||
m_data.moveChunk(p, p+1, m_outerIndex[i]+m_innerNonZeros[i]-p);
|
||||
m_innerNonZeros[i]++;
|
||||
m_data.value(p) = Scalar(0);
|
||||
m_data.index(p) = StorageIndex(i);
|
||||
assignFunc.assignCoeff(m_data.value(p), diaEval.coeff(i));
|
||||
}
|
||||
else
|
||||
{
|
||||
// defer insertion
|
||||
newEntries.push_back(Record(i,p));
|
||||
}
|
||||
}
|
||||
// 2 - insert deferred entries
|
||||
Index n_entries = Index(newEntries.size());
|
||||
if(n_entries>0)
|
||||
{
|
||||
Storage newData(m_data.size()+n_entries);
|
||||
Index prev_p = 0;
|
||||
Index prev_i = 0;
|
||||
for(Index k=0; k<n_entries;++k)
|
||||
{
|
||||
Index i = newEntries[k].i;
|
||||
Index p = newEntries[k].p;
|
||||
internal::smart_copy(m_data.valuePtr()+prev_p, m_data.valuePtr()+p, newData.valuePtr()+prev_p+k);
|
||||
internal::smart_copy(m_data.indexPtr()+prev_p, m_data.indexPtr()+p, newData.indexPtr()+prev_p+k);
|
||||
for(Index j=prev_i;j<i;++j)
|
||||
m_outerIndex[j+1] += k;
|
||||
if(!isComp)
|
||||
m_innerNonZeros[i]++;
|
||||
prev_p = p;
|
||||
prev_i = i;
|
||||
newData.value(p+k) = Scalar(0);
|
||||
newData.index(p+k) = StorageIndex(i);
|
||||
assignFunc.assignCoeff(newData.value(p+k), diaEval.coeff(i));
|
||||
}
|
||||
{
|
||||
internal::smart_copy(m_data.valuePtr()+prev_p, m_data.valuePtr()+m_data.size(), newData.valuePtr()+prev_p+n_entries);
|
||||
internal::smart_copy(m_data.indexPtr()+prev_p, m_data.indexPtr()+m_data.size(), newData.indexPtr()+prev_p+n_entries);
|
||||
for(Index j=prev_i+1;j<=m_outerSize;++j)
|
||||
m_outerIndex[j] += n_entries;
|
||||
}
|
||||
m_data.swap(newData);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerance \a epsilon */
|
||||
void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
|
||||
|
@ -546,7 +546,7 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
{
|
||||
DenseVector d = DenseVector::Random(rows);
|
||||
DenseMatrix refMat2 = d.asDiagonal();
|
||||
SparseMatrixType m2(rows, rows);
|
||||
SparseMatrixType m2;
|
||||
m2 = d.asDiagonal();
|
||||
VERIFY_IS_APPROX(m2, refMat2);
|
||||
SparseMatrixType m3(d.asDiagonal());
|
||||
@ -554,6 +554,28 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
refMat2 += d.asDiagonal();
|
||||
m2 += d.asDiagonal();
|
||||
VERIFY_IS_APPROX(m2, refMat2);
|
||||
m2.setZero(); m2 += d.asDiagonal();
|
||||
refMat2.setZero(); refMat2 += d.asDiagonal();
|
||||
VERIFY_IS_APPROX(m2, refMat2);
|
||||
m2.setZero(); m2 -= d.asDiagonal();
|
||||
refMat2.setZero(); refMat2 -= d.asDiagonal();
|
||||
VERIFY_IS_APPROX(m2, refMat2);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2);
|
||||
m2.makeCompressed();
|
||||
m2 += d.asDiagonal();
|
||||
refMat2 += d.asDiagonal();
|
||||
VERIFY_IS_APPROX(m2, refMat2);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2);
|
||||
m2.makeCompressed();
|
||||
VectorXi res(rows);
|
||||
for(Index i=0; i<rows; ++i)
|
||||
res(i) = internal::random<int>(0,3);
|
||||
m2.reserve(res);
|
||||
m2 -= d.asDiagonal();
|
||||
refMat2 -= d.asDiagonal();
|
||||
VERIFY_IS_APPROX(m2, refMat2);
|
||||
}
|
||||
|
||||
// test conservative resize
|
||||
|
Loading…
x
Reference in New Issue
Block a user