mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
Added support for argmax/argmin
This commit is contained in:
parent
2ab603316a
commit
f41831e445
@ -73,6 +73,7 @@
|
||||
#include "src/Tensor/TensorEvaluator.h"
|
||||
#include "src/Tensor/TensorExpr.h"
|
||||
#include "src/Tensor/TensorReduction.h"
|
||||
#include "src/Tensor/TensorArgMax.h"
|
||||
#include "src/Tensor/TensorConcatenation.h"
|
||||
#include "src/Tensor/TensorContraction.h"
|
||||
#include "src/Tensor/TensorContractionThreadPool.h"
|
||||
|
288
unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h
Normal file
288
unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h
Normal file
@ -0,0 +1,288 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
|
||||
// Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
|
||||
#define EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
|
||||
|
||||
namespace Eigen {
|
||||
namespace internal {
|
||||
|
||||
/** \class TensorIndexTuple
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor + Index Tuple class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
template<typename XprType>
|
||||
struct traits<TensorIndexTupleOp<XprType> > : public traits<XprType>
|
||||
{
|
||||
typedef traits<XprType> XprTraits;
|
||||
typedef typename XprTraits::StorageKind StorageKind;
|
||||
typedef typename XprTraits::Index Index;
|
||||
typedef Tuple<Index, typename XprTraits::Scalar> Scalar;
|
||||
typedef typename XprType::Nested Nested;
|
||||
typedef typename remove_reference<Nested>::type _Nested;
|
||||
static const int NumDimensions = XprTraits::NumDimensions;
|
||||
static const int Layout = XprTraits::Layout;
|
||||
};
|
||||
|
||||
template<typename XprType>
|
||||
struct eval<TensorIndexTupleOp<XprType>, Eigen::Dense>
|
||||
{
|
||||
typedef const TensorIndexTupleOp<XprType>& type;
|
||||
};
|
||||
|
||||
template<typename XprType>
|
||||
struct nested<TensorIndexTupleOp<XprType>, 1,
|
||||
typename eval<TensorIndexTupleOp<XprType> >::type>
|
||||
{
|
||||
typedef TensorIndexTupleOp<XprType> type;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename XprType>
|
||||
class TensorIndexTupleOp : public TensorBase<TensorIndexTupleOp<XprType>, ReadOnlyAccessors>
|
||||
{
|
||||
public:
|
||||
typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Scalar Scalar;
|
||||
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename Eigen::internal::nested<TensorIndexTupleOp>::type Nested;
|
||||
typedef typename Eigen::internal::traits<TensorIndexTupleOp>::StorageKind StorageKind;
|
||||
typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Index Index;
|
||||
typedef Tuple<Index, typename XprType::CoeffReturnType> CoeffReturnType;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIndexTupleOp(const XprType& expr)
|
||||
: m_xpr(expr) {}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const typename internal::remove_all<typename XprType::Nested>::type&
|
||||
expression() const { return m_xpr; }
|
||||
|
||||
protected:
|
||||
typename XprType::Nested m_xpr;
|
||||
};
|
||||
|
||||
// Eval as rvalue
|
||||
template<typename ArgType, typename Device>
|
||||
struct TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device>
|
||||
{
|
||||
typedef TensorIndexTupleOp<ArgType> XprType;
|
||||
typedef typename XprType::Index Index;
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
|
||||
typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
|
||||
static const int NumDims = internal::array_size<Dimensions>::value;
|
||||
|
||||
enum {
|
||||
IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
|
||||
PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false,
|
||||
BlockAccess = false,
|
||||
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||
CoordAccess = false, // to be implemented
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||
: m_impl(op.expression(), device) { }
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
|
||||
return m_impl.dimensions();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
|
||||
m_impl.evalSubExprsIfNeeded(NULL);
|
||||
return true;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
||||
m_impl.cleanup();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
return CoeffReturnType(index, m_impl.coeff(index));
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
|
||||
|
||||
protected:
|
||||
TensorEvaluator<ArgType, Device> m_impl;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \class TensorTupleIndex
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Converts to Tensor<Tuple<Index, Scalar> > and reduces to Tensor<Index>.
|
||||
*
|
||||
*/
|
||||
template<typename ReduceOp, typename Dims, typename XprType>
|
||||
struct traits<TensorTupleReducerOp<ReduceOp, Dims, XprType> > : public traits<XprType>
|
||||
{
|
||||
typedef traits<XprType> XprTraits;
|
||||
typedef typename XprTraits::StorageKind StorageKind;
|
||||
typedef typename XprTraits::Index Index;
|
||||
typedef Index Scalar;
|
||||
typedef typename XprType::Nested Nested;
|
||||
typedef typename remove_reference<Nested>::type _Nested;
|
||||
static const int NumDimensions = XprTraits::NumDimensions;
|
||||
static const int Layout = XprTraits::Layout;
|
||||
};
|
||||
|
||||
template<typename ReduceOp, typename Dims, typename XprType>
|
||||
struct eval<TensorTupleReducerOp<ReduceOp, Dims, XprType>, Eigen::Dense>
|
||||
{
|
||||
typedef const TensorTupleReducerOp<ReduceOp, Dims, XprType>& type;
|
||||
};
|
||||
|
||||
template<typename ReduceOp, typename Dims, typename XprType>
|
||||
struct nested<TensorTupleReducerOp<ReduceOp, Dims, XprType>, 1,
|
||||
typename eval<TensorTupleReducerOp<ReduceOp, Dims, XprType> >::type>
|
||||
{
|
||||
typedef TensorTupleReducerOp<ReduceOp, Dims, XprType> type;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename ReduceOp, typename Dims, typename XprType>
|
||||
class TensorTupleReducerOp : public TensorBase<TensorTupleReducerOp<ReduceOp, Dims, XprType>, ReadOnlyAccessors>
|
||||
{
|
||||
public:
|
||||
typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Scalar Scalar;
|
||||
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename Eigen::internal::nested<TensorTupleReducerOp>::type Nested;
|
||||
typedef typename Eigen::internal::traits<TensorTupleReducerOp>::StorageKind StorageKind;
|
||||
typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Index Index;
|
||||
typedef Index CoeffReturnType;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorTupleReducerOp(const XprType& expr,
|
||||
const ReduceOp& reduce_op,
|
||||
const int return_dim,
|
||||
const Dims& reduce_dims)
|
||||
: m_xpr(expr), m_reduce_op(reduce_op), m_return_dim(return_dim), m_reduce_dims(reduce_dims) {}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const typename internal::remove_all<typename XprType::Nested>::type&
|
||||
expression() const { return m_xpr; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const ReduceOp& reduce_op() const { return m_reduce_op; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const Dims& reduce_dims() const { return m_reduce_dims; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
int return_dim() const { return m_return_dim; }
|
||||
|
||||
protected:
|
||||
typename XprType::Nested m_xpr;
|
||||
const ReduceOp m_reduce_op;
|
||||
const int m_return_dim;
|
||||
const Dims m_reduce_dims;
|
||||
};
|
||||
|
||||
// Eval as rvalue
|
||||
template<typename ReduceOp, typename Dims, typename ArgType, typename Device>
|
||||
struct TensorEvaluator<const TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Device>
|
||||
{
|
||||
typedef TensorTupleReducerOp<ReduceOp, Dims, ArgType> XprType;
|
||||
typedef typename XprType::Index Index;
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename TensorIndexTupleOp<ArgType>::CoeffReturnType TupleType;
|
||||
typedef typename TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Dimensions Dimensions;
|
||||
typedef typename TensorEvaluator<const TensorIndexTupleOp<ArgType> , Device>::Dimensions InputDimensions;
|
||||
static const int NumDims = internal::array_size<InputDimensions>::value;
|
||||
typedef array<Index, NumDims> StrideDims;
|
||||
|
||||
enum {
|
||||
IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
|
||||
PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false,
|
||||
BlockAccess = false,
|
||||
Layout = TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Layout,
|
||||
CoordAccess = false, // to be implemented
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||
: m_orig_impl(op.expression(), device),
|
||||
m_impl(op.expression().index_tuples().reduce(op.reduce_dims(), op.reduce_op()), device),
|
||||
m_return_dim(op.return_dim()),
|
||||
m_strides(gen_strides(m_orig_impl.dimensions())),
|
||||
m_stride_mod(gen_stride_mod(m_orig_impl.dimensions())),
|
||||
m_stride_div(gen_stride_div()) { }
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
|
||||
return m_impl.dimensions();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
|
||||
m_impl.evalSubExprsIfNeeded(NULL);
|
||||
return true;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
||||
m_impl.cleanup();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
|
||||
const TupleType v = m_impl.coeff(index);
|
||||
return (m_return_dim < 0) ? v.first : (v.first % m_stride_mod) / m_stride_div;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
|
||||
|
||||
private:
|
||||
EIGEN_DEVICE_FUNC StrideDims gen_strides(const InputDimensions& dims) {
|
||||
StrideDims strides;
|
||||
if (m_return_dim < 0) return strides; // Won't be using these.
|
||||
eigen_assert(m_return_dim < NumDims &&
|
||||
"Asking to convert index to a dimension outside of the rank");
|
||||
|
||||
// Calculate m_stride_div and m_stride_mod, which are used to
|
||||
// calculate the value of an index w.r.t. the m_return_dim.
|
||||
if (Layout == static_cast<int>(ColMajor)) {
|
||||
strides[0] = 1;
|
||||
for (int i = 1; i < NumDims; ++i) {
|
||||
strides[i] = strides[i-1] * dims[i-1];
|
||||
}
|
||||
} else {
|
||||
strides[NumDims-1] = 1;
|
||||
for (int i = NumDims - 2; i >= 0; --i) {
|
||||
strides[i] = strides[i+1] * dims[i+1];
|
||||
}
|
||||
}
|
||||
return strides;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC Index gen_stride_mod(const InputDimensions& dims) {
|
||||
if (Layout == static_cast<int>(ColMajor)) {
|
||||
return (m_return_dim < NumDims - 1) ? m_strides[m_return_dim + 1] : dims.TotalSize();
|
||||
} else {
|
||||
return (m_return_dim > 0) ? m_strides[m_return_dim - 1] : dims.TotalSize();
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC Index gen_stride_div() {
|
||||
return m_strides[m_return_dim];
|
||||
}
|
||||
|
||||
protected:
|
||||
TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device> m_orig_impl;
|
||||
TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device> m_impl;
|
||||
const int m_return_dim;
|
||||
const StrideDims m_strides;
|
||||
const Index m_stride_mod;
|
||||
const Index m_stride_div;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
|
@ -363,6 +363,58 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
||||
return TensorReductionOp<internal::MinReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MinReducer<CoeffReturnType>());
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorTupleReducerOp<
|
||||
internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
|
||||
const array<Index, NumDimensions>, const Derived>
|
||||
argmax() const {
|
||||
array<Index, NumDimensions> in_dims;
|
||||
for (int d = 0; d < NumDimensions; ++d) in_dims[d] = d;
|
||||
return TensorTupleReducerOp<
|
||||
internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
|
||||
const array<Index, NumDimensions>,
|
||||
const Derived>(derived(), internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >(), -1, in_dims);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorTupleReducerOp<
|
||||
internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
|
||||
const array<Index, NumDimensions>, const Derived>
|
||||
argmin() const {
|
||||
array<Index, NumDimensions> in_dims;
|
||||
for (int d = 0; d < NumDimensions; ++d) in_dims[d] = d;
|
||||
return TensorTupleReducerOp<
|
||||
internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
|
||||
const array<Index, NumDimensions>,
|
||||
const Derived>(derived(), internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >(), -1, in_dims);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorTupleReducerOp<
|
||||
internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
|
||||
const array<Index, 1>, const Derived>
|
||||
argmax(const int return_dim) const {
|
||||
array<Index, 1> in_dims;
|
||||
in_dims[0] = return_dim;
|
||||
return TensorTupleReducerOp<
|
||||
internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
|
||||
const array<Index, 1>,
|
||||
const Derived>(derived(), internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >(), return_dim, in_dims);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorTupleReducerOp<
|
||||
internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
|
||||
const array<Index, 1>, const Derived>
|
||||
argmin(const int return_dim) const {
|
||||
array<Index, 1> in_dims;
|
||||
in_dims[0] = return_dim;
|
||||
return TensorTupleReducerOp<
|
||||
internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
|
||||
const array<Index, 1>,
|
||||
const Derived>(derived(), internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >(), return_dim, in_dims);
|
||||
}
|
||||
|
||||
template <typename Reducer, typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorReductionOp<Reducer, const Dims, const Derived>
|
||||
reduce(const Dims& dims, const Reducer& reducer) const {
|
||||
@ -483,6 +535,13 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
||||
return TensorInflationOp<const Strides, const Derived>(derived(), strides);
|
||||
}
|
||||
|
||||
// Returns a tensor containing index/value tuples
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorIndexTupleOp<const Derived>
|
||||
index_tuples() const {
|
||||
return TensorIndexTupleOp<const Derived>(derived());
|
||||
}
|
||||
|
||||
// Support for custom unary and binary operations
|
||||
template <typename CustomUnaryFunc>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
|
@ -23,6 +23,8 @@ template<typename UnaryOp, typename XprType> class TensorCwiseUnaryOp;
|
||||
template<typename BinaryOp, typename LeftXprType, typename RightXprType> class TensorCwiseBinaryOp;
|
||||
template<typename IfXprType, typename ThenXprType, typename ElseXprType> class TensorSelectOp;
|
||||
template<typename Op, typename Dims, typename XprType> class TensorReductionOp;
|
||||
template<typename XprType> class TensorIndexTupleOp;
|
||||
template<typename ReduceOp, typename Dims, typename XprType> class TensorTupleReducerOp;
|
||||
template<typename Axis, typename LeftXprType, typename RightXprType> class TensorConcatenationOp;
|
||||
template<typename Dimensions, typename LeftXprType, typename RightXprType> class TensorContractionOp;
|
||||
template<typename TargetType, typename XprType> class TensorConversionOp;
|
||||
|
@ -219,6 +219,40 @@ template <typename T> struct ProdReducer
|
||||
};
|
||||
|
||||
|
||||
// Argmin/Argmax reducers
|
||||
template <typename T> struct ArgMaxTupleReducer
|
||||
{
|
||||
static const bool PacketAccess = false;
|
||||
static const bool IsStateful = false;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const {
|
||||
if (t.second > accum->second) { *accum = t; }
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
|
||||
return T(0, NumTraits<typename T::second_type>::lowest());
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T& accum) const {
|
||||
return accum;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T> struct ArgMinTupleReducer
|
||||
{
|
||||
static const bool PacketAccess = false;
|
||||
static const bool IsStateful = false;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T& t, T* accum) const {
|
||||
if (t.second < accum->second) { *accum = t; }
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
|
||||
return T(0, NumTraits<typename T::second_type>::highest());
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T& accum) const {
|
||||
return accum;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Random number generation
|
||||
namespace {
|
||||
#ifdef __CUDA_ARCH__
|
||||
|
@ -31,6 +31,60 @@ template <> struct max_n_1<0> {
|
||||
static const size_t size = 1;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
#if defined(EIGEN_HAS_CONSTEXPR)
|
||||
#define EIGEN_CONSTEXPR constexpr
|
||||
#else
|
||||
#define EIGEN_CONSTEXPR
|
||||
#endif
|
||||
|
||||
// Tuple mimics std::pair but works on e.g. nvcc.
|
||||
template <typename U, typename V> struct Tuple {
|
||||
public:
|
||||
U first;
|
||||
V second;
|
||||
|
||||
typedef U first_type;
|
||||
typedef V second_type;
|
||||
|
||||
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Tuple() : first(), second() {}
|
||||
|
||||
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Tuple(const U& f, const V& s) : first(f), second(s) {}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Tuple& operator= (const Tuple& rhs) {
|
||||
if (&rhs == this) return *this;
|
||||
first = rhs.first;
|
||||
second = rhs.second;
|
||||
return *this;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
void swap(Tuple& rhs) {
|
||||
using numext::swap;
|
||||
swap(first, rhs.first);
|
||||
swap(second, rhs.second);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename U, typename V>
|
||||
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
bool operator==(const Tuple<U, V>& x, const Tuple<U, V>& y) {
|
||||
return (x.first == y.first && x.second == y.second);
|
||||
}
|
||||
|
||||
template <typename U, typename V>
|
||||
EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
bool operator!=(const Tuple<U, V>& x, const Tuple<U, V>& y) {
|
||||
return !(x == y);
|
||||
}
|
||||
|
||||
#undef EIGEN_CONSTEXPR
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#endif // EIGEN_CXX11_TENSOR_TENSOR_META_H
|
||||
|
@ -130,6 +130,7 @@ if(EIGEN_TEST_CXX11)
|
||||
ei_add_test(cxx11_tensor_image_patch "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_volume_patch "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_reduction "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_argmax "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_shuffling "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_striding "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_thread_pool "-std=c++0x")
|
||||
@ -148,5 +149,6 @@ if(EIGEN_TEST_CXX11)
|
||||
# ei_add_test(cxx11_tensor_contract_cuda "-std=c++0x")
|
||||
# ei_add_test(cxx11_tensor_reduction_cuda "-std=c++0x")
|
||||
# ei_add_test(cxx11_tensor_random_cuda "-std=c++0x")
|
||||
# ei_add_test(cxx11_tensor_argmax_cuda "-std=c++0x")
|
||||
|
||||
endif()
|
||||
|
294
unsupported/test/cxx11_tensor_argmax.cpp
Normal file
294
unsupported/test/cxx11_tensor_argmax.cpp
Normal file
@ -0,0 +1,294 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2015 Eugene Brevdo <ebrevdo@google.com>
|
||||
// Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
#include <Eigen/CXX11/Tensor>
|
||||
|
||||
using Eigen::Tensor;
|
||||
using Eigen::array;
|
||||
using Eigen::Tuple;
|
||||
|
||||
template <int DataLayout>
|
||||
static void test_simple_index_tuples()
|
||||
{
|
||||
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
||||
tensor.setRandom();
|
||||
tensor = (tensor + tensor.constant(0.5)).log();
|
||||
|
||||
Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
|
||||
index_tuples = tensor.index_tuples();
|
||||
|
||||
for (DenseIndex n = 0; n < 2*3*5*7; ++n) {
|
||||
const Tuple<DenseIndex, float>& v = index_tuples.coeff(n);
|
||||
VERIFY_IS_EQUAL(v.first, n);
|
||||
VERIFY_IS_EQUAL(v.second, tensor.coeff(n));
|
||||
}
|
||||
}
|
||||
|
||||
template <int DataLayout>
|
||||
static void test_index_tuples_dim()
|
||||
{
|
||||
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
||||
tensor.setRandom();
|
||||
tensor = (tensor + tensor.constant(0.5)).log();
|
||||
|
||||
Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
|
||||
|
||||
index_tuples = tensor.index_tuples();
|
||||
|
||||
for (Eigen::DenseIndex n = 0; n < tensor.size(); ++n) {
|
||||
const Tuple<DenseIndex, float>& v = index_tuples(n); //(i, j, k, l);
|
||||
VERIFY_IS_EQUAL(v.first, n);
|
||||
VERIFY_IS_EQUAL(v.second, tensor(n));
|
||||
}
|
||||
}
|
||||
|
||||
template <int DataLayout>
|
||||
static void test_argmax_tuple_reducer()
|
||||
{
|
||||
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
||||
tensor.setRandom();
|
||||
tensor = (tensor + tensor.constant(0.5)).log();
|
||||
|
||||
Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
|
||||
index_tuples = tensor.index_tuples();
|
||||
|
||||
Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced(1);
|
||||
DimensionList<DenseIndex, 4> dims;
|
||||
reduced = index_tuples.reduce(
|
||||
dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float>>());
|
||||
|
||||
Tensor<float, 1, DataLayout> maxi = tensor.maximum();
|
||||
|
||||
VERIFY_IS_EQUAL(maxi(0), reduced(0).second);
|
||||
|
||||
array<DenseIndex, 3> reduce_dims;
|
||||
for (int d = 0; d < 3; ++d) reduce_dims[d] = d;
|
||||
Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced_by_dims(7);
|
||||
reduced_by_dims = index_tuples.reduce(
|
||||
reduce_dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float>>());
|
||||
|
||||
Tensor<float, 1, DataLayout> max_by_dims = tensor.maximum(reduce_dims);
|
||||
|
||||
for (int l = 0; l < 7; ++l) {
|
||||
VERIFY_IS_EQUAL(max_by_dims(l), reduced_by_dims(l).second);
|
||||
}
|
||||
}
|
||||
|
||||
template <int DataLayout>
|
||||
static void test_argmin_tuple_reducer()
|
||||
{
|
||||
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
||||
tensor.setRandom();
|
||||
tensor = (tensor + tensor.constant(0.5)).log();
|
||||
|
||||
Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
|
||||
index_tuples = tensor.index_tuples();
|
||||
|
||||
Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced(1);
|
||||
DimensionList<DenseIndex, 4> dims;
|
||||
reduced = index_tuples.reduce(
|
||||
dims, internal::ArgMinTupleReducer<Tuple<DenseIndex, float>>());
|
||||
|
||||
Tensor<float, 1, DataLayout> mini = tensor.minimum();
|
||||
|
||||
VERIFY_IS_EQUAL(mini(0), reduced(0).second);
|
||||
|
||||
array<DenseIndex, 3> reduce_dims;
|
||||
for (int d = 0; d < 3; ++d) reduce_dims[d] = d;
|
||||
Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced_by_dims(7);
|
||||
reduced_by_dims = index_tuples.reduce(
|
||||
reduce_dims, internal::ArgMinTupleReducer<Tuple<DenseIndex, float>>());
|
||||
|
||||
Tensor<float, 1, DataLayout> min_by_dims = tensor.minimum(reduce_dims);
|
||||
|
||||
for (int l = 0; l < 7; ++l) {
|
||||
VERIFY_IS_EQUAL(min_by_dims(l), reduced_by_dims(l).second);
|
||||
}
|
||||
}
|
||||
|
||||
template <int DataLayout>
|
||||
static void test_simple_argmax()
|
||||
{
|
||||
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
||||
tensor.setRandom();
|
||||
tensor = (tensor + tensor.constant(0.5)).log();
|
||||
tensor(0,0,0,0) = 10.0;
|
||||
|
||||
Tensor<DenseIndex, 1, DataLayout> tensor_argmax(1);
|
||||
|
||||
tensor_argmax = tensor.argmax();
|
||||
|
||||
VERIFY_IS_EQUAL(tensor_argmax(0), 0);
|
||||
|
||||
tensor(1,2,4,6) = 20.0;
|
||||
|
||||
tensor_argmax = tensor.argmax();
|
||||
|
||||
VERIFY_IS_EQUAL(tensor_argmax(0), 2*3*5*7 - 1);
|
||||
}
|
||||
|
||||
template <int DataLayout>
|
||||
static void test_simple_argmin()
|
||||
{
|
||||
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
||||
tensor.setRandom();
|
||||
tensor = (tensor + tensor.constant(0.5)).log();
|
||||
tensor(0,0,0,0) = -10.0;
|
||||
|
||||
Tensor<DenseIndex, 1, DataLayout> tensor_argmin(1);
|
||||
|
||||
tensor_argmin = tensor.argmin();
|
||||
|
||||
VERIFY_IS_EQUAL(tensor_argmin(0), 0);
|
||||
|
||||
tensor(1,2,4,6) = -20.0;
|
||||
|
||||
tensor_argmin = tensor.argmin();
|
||||
|
||||
VERIFY_IS_EQUAL(tensor_argmin(0), 2*3*5*7 - 1);
|
||||
}
|
||||
|
||||
template <int DataLayout>
|
||||
static void test_argmax_dim()
|
||||
{
|
||||
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
||||
std::vector<int> dims {2, 3, 5, 7};
|
||||
|
||||
for (int dim = 0; dim < 4; ++dim) {
|
||||
tensor.setRandom();
|
||||
tensor = (tensor + tensor.constant(0.5)).log();
|
||||
|
||||
Tensor<DenseIndex, 3, DataLayout> tensor_argmax;
|
||||
array<DenseIndex, 4> ix;
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
for (int k = 0; k < 5; ++k) {
|
||||
for (int l = 0; l < 7; ++l) {
|
||||
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
||||
if (ix[dim] != 0) continue;
|
||||
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
|
||||
tensor(ix) = 10.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tensor_argmax = tensor.argmax(dim);
|
||||
|
||||
VERIFY_IS_EQUAL(tensor_argmax.dimensions().TotalSize(),
|
||||
size_t(2*3*5*7 / tensor.dimension(dim)));
|
||||
for (size_t n = 0; n < tensor_argmax.dimensions().TotalSize(); ++n) {
|
||||
// Expect max to be in the first index of the reduced dimension
|
||||
VERIFY_IS_EQUAL(tensor_argmax.data()[n], 0);
|
||||
}
|
||||
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
for (int k = 0; k < 5; ++k) {
|
||||
for (int l = 0; l < 7; ++l) {
|
||||
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
||||
if (ix[dim] != tensor.dimension(dim) - 1) continue;
|
||||
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
|
||||
tensor(ix) = 20.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tensor_argmax = tensor.argmax(dim);
|
||||
|
||||
VERIFY_IS_EQUAL(tensor_argmax.dimensions().TotalSize(),
|
||||
size_t(2*3*5*7 / tensor.dimension(dim)));
|
||||
for (size_t n = 0; n < tensor_argmax.dimensions().TotalSize(); ++n) {
|
||||
// Expect max to be in the last index of the reduced dimension
|
||||
VERIFY_IS_EQUAL(tensor_argmax.data()[n], tensor.dimension(dim) - 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <int DataLayout>
|
||||
static void test_argmin_dim()
|
||||
{
|
||||
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
||||
std::vector<int> dims {2, 3, 5, 7};
|
||||
|
||||
for (int dim = 0; dim < 4; ++dim) {
|
||||
tensor.setRandom();
|
||||
tensor = (tensor + tensor.constant(0.5)).log();
|
||||
|
||||
Tensor<DenseIndex, 3, DataLayout> tensor_argmin;
|
||||
array<DenseIndex, 4> ix;
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
for (int k = 0; k < 5; ++k) {
|
||||
for (int l = 0; l < 7; ++l) {
|
||||
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
||||
if (ix[dim] != 0) continue;
|
||||
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = -10.0
|
||||
tensor(ix) = -10.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tensor_argmin = tensor.argmin(dim);
|
||||
|
||||
VERIFY_IS_EQUAL(tensor_argmin.dimensions().TotalSize(),
|
||||
size_t(2*3*5*7 / tensor.dimension(dim)));
|
||||
for (size_t n = 0; n < tensor_argmin.dimensions().TotalSize(); ++n) {
|
||||
// Expect min to be in the first index of the reduced dimension
|
||||
VERIFY_IS_EQUAL(tensor_argmin.data()[n], 0);
|
||||
}
|
||||
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
for (int k = 0; k < 5; ++k) {
|
||||
for (int l = 0; l < 7; ++l) {
|
||||
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
||||
if (ix[dim] != tensor.dimension(dim) - 1) continue;
|
||||
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = -20.0
|
||||
tensor(ix) = -20.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tensor_argmin = tensor.argmin(dim);
|
||||
|
||||
VERIFY_IS_EQUAL(tensor_argmin.dimensions().TotalSize(),
|
||||
size_t(2*3*5*7 / tensor.dimension(dim)));
|
||||
for (size_t n = 0; n < tensor_argmin.dimensions().TotalSize(); ++n) {
|
||||
// Expect min to be in the last index of the reduced dimension
|
||||
VERIFY_IS_EQUAL(tensor_argmin.data()[n], tensor.dimension(dim) - 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void test_cxx11_tensor_argmax()
|
||||
{
|
||||
CALL_SUBTEST(test_simple_index_tuples<RowMajor>());
|
||||
CALL_SUBTEST(test_simple_index_tuples<ColMajor>());
|
||||
CALL_SUBTEST(test_index_tuples_dim<RowMajor>());
|
||||
CALL_SUBTEST(test_index_tuples_dim<ColMajor>());
|
||||
CALL_SUBTEST(test_argmax_tuple_reducer<RowMajor>());
|
||||
CALL_SUBTEST(test_argmax_tuple_reducer<ColMajor>());
|
||||
CALL_SUBTEST(test_argmin_tuple_reducer<RowMajor>());
|
||||
CALL_SUBTEST(test_argmin_tuple_reducer<ColMajor>());
|
||||
CALL_SUBTEST(test_simple_argmax<RowMajor>());
|
||||
CALL_SUBTEST(test_simple_argmax<ColMajor>());
|
||||
CALL_SUBTEST(test_simple_argmin<RowMajor>());
|
||||
CALL_SUBTEST(test_simple_argmin<ColMajor>());
|
||||
CALL_SUBTEST(test_argmax_dim<RowMajor>());
|
||||
CALL_SUBTEST(test_argmax_dim<ColMajor>());
|
||||
CALL_SUBTEST(test_argmin_dim<RowMajor>());
|
||||
CALL_SUBTEST(test_argmin_dim<ColMajor>());
|
||||
}
|
241
unsupported/test/cxx11_tensor_argmax_cuda.cpp
Normal file
241
unsupported/test/cxx11_tensor_argmax_cuda.cpp
Normal file
@ -0,0 +1,241 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
// TODO(mdevin): Free the cuda memory.
|
||||
|
||||
#define EIGEN_TEST_FUNC cxx11_tensor_cuda
|
||||
#define EIGEN_USE_GPU
|
||||
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/CXX11/Tensor>
|
||||
|
||||
using Eigen::Tensor;
|
||||
|
||||
template <int Layout>
|
||||
void test_cuda_simple_argmax()
|
||||
{
|
||||
Tensor<double, 3, Layout> in(Eigen::array<DenseIndex, 3>(72,53,97));
|
||||
Tensor<DenseIndex, 1, Layout> out_max(Eigen::array<DenseIndex, 1>(1));
|
||||
Tensor<DenseIndex, 1, Layout> out_min(Eigen::array<DenseIndex, 1>(1));
|
||||
in.setRandom();
|
||||
in *= in.constant(100.0);
|
||||
in(0, 0, 0) = -1000.0;
|
||||
in(71, 52, 96) = 1000.0;
|
||||
|
||||
std::size_t in_bytes = in.size() * sizeof(double);
|
||||
std::size_t out_bytes = out_max.size() * sizeof(DenseIndex);
|
||||
|
||||
double* d_in;
|
||||
DenseIndex* d_out_max;
|
||||
DenseIndex* d_out_min;
|
||||
cudaMalloc((void**)(&d_in), in_bytes);
|
||||
cudaMalloc((void**)(&d_out_max), out_bytes);
|
||||
cudaMalloc((void**)(&d_out_min), out_bytes);
|
||||
|
||||
cudaMemcpy(d_in, in.data(), in_bytes, cudaMemcpyHostToDevice);
|
||||
|
||||
Eigen::CudaStreamDevice stream;
|
||||
Eigen::GpuDevice gpu_device(&stream);
|
||||
|
||||
Eigen::TensorMap<Eigen::Tensor<double, 3, Layout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 3>(72,53,97));
|
||||
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_max(d_out_max, Eigen::array<DenseIndex, 1>(1));
|
||||
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_min(d_out_min, Eigen::array<DenseIndex, 1>(1));
|
||||
|
||||
gpu_out_max.device(gpu_device) = gpu_in.argmax();
|
||||
gpu_out_min.device(gpu_device) = gpu_in.argmin();
|
||||
|
||||
assert(cudaMemcpyAsync(out_max.data(), d_out_max, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
||||
assert(cudaMemcpyAsync(out_min.data(), d_out_min, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
||||
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
||||
|
||||
VERIFY_IS_EQUAL(out_max(Eigen::array<DenseIndex, 1>(0)), 72*53*97 - 1);
|
||||
VERIFY_IS_EQUAL(out_min(Eigen::array<DenseIndex, 1>(0)), 0);
|
||||
}
|
||||
|
||||
template <int DataLayout>
|
||||
void test_cuda_argmax_dim()
|
||||
{
|
||||
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
||||
std::vector<int> dims;
|
||||
dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7);
|
||||
|
||||
for (int dim = 0; dim < 4; ++dim) {
|
||||
tensor.setRandom();
|
||||
tensor = (tensor + tensor.constant(0.5)).log();
|
||||
|
||||
array<DenseIndex, 3> out_shape;
|
||||
for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
|
||||
|
||||
Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
|
||||
|
||||
array<DenseIndex, 4> ix;
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
for (int k = 0; k < 5; ++k) {
|
||||
for (int l = 0; l < 7; ++l) {
|
||||
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
||||
if (ix[dim] != 0) continue;
|
||||
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
|
||||
tensor(ix) = 10.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t in_bytes = tensor.size() * sizeof(float);
|
||||
std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
|
||||
|
||||
float* d_in;
|
||||
DenseIndex* d_out;
|
||||
cudaMalloc((void**)(&d_in), in_bytes);
|
||||
cudaMalloc((void**)(&d_out), out_bytes);
|
||||
|
||||
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
|
||||
|
||||
Eigen::CudaStreamDevice stream;
|
||||
Eigen::GpuDevice gpu_device(&stream);
|
||||
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
|
||||
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape);
|
||||
|
||||
gpu_out.device(gpu_device) = gpu_in.argmax(dim);
|
||||
|
||||
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
||||
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
||||
|
||||
VERIFY_IS_EQUAL(tensor_arg.dimensions().TotalSize(),
|
||||
size_t(2*3*5*7 / tensor.dimension(dim)));
|
||||
|
||||
for (size_t n = 0; n < tensor_arg.dimensions().TotalSize(); ++n) {
|
||||
// Expect max to be in the first index of the reduced dimension
|
||||
VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
|
||||
}
|
||||
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
for (int k = 0; k < 5; ++k) {
|
||||
for (int l = 0; l < 7; ++l) {
|
||||
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
||||
if (ix[dim] != tensor.dimension(dim) - 1) continue;
|
||||
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
|
||||
tensor(ix) = 20.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
|
||||
|
||||
gpu_out.device(gpu_device) = gpu_in.argmax(dim);
|
||||
|
||||
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
||||
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
||||
|
||||
for (size_t n = 0; n < tensor_arg.dimensions().TotalSize(); ++n) {
|
||||
// Expect max to be in the last index of the reduced dimension
|
||||
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <int DataLayout>
|
||||
void test_cuda_argmin_dim()
|
||||
{
|
||||
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
||||
std::vector<int> dims;
|
||||
dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7);
|
||||
|
||||
for (int dim = 0; dim < 4; ++dim) {
|
||||
tensor.setRandom();
|
||||
tensor = (tensor + tensor.constant(0.5)).log();
|
||||
|
||||
array<DenseIndex, 3> out_shape;
|
||||
for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
|
||||
|
||||
Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
|
||||
|
||||
array<DenseIndex, 4> ix;
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
for (int k = 0; k < 5; ++k) {
|
||||
for (int l = 0; l < 7; ++l) {
|
||||
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
||||
if (ix[dim] != 0) continue;
|
||||
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
|
||||
tensor(ix) = -10.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t in_bytes = tensor.size() * sizeof(float);
|
||||
std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
|
||||
|
||||
float* d_in;
|
||||
DenseIndex* d_out;
|
||||
cudaMalloc((void**)(&d_in), in_bytes);
|
||||
cudaMalloc((void**)(&d_out), out_bytes);
|
||||
|
||||
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
|
||||
|
||||
Eigen::CudaStreamDevice stream;
|
||||
Eigen::GpuDevice gpu_device(&stream);
|
||||
|
||||
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
|
||||
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape);
|
||||
|
||||
gpu_out.device(gpu_device) = gpu_in.argmin(dim);
|
||||
|
||||
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
||||
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
||||
|
||||
VERIFY_IS_EQUAL(tensor_arg.dimensions().TotalSize(),
|
||||
size_t(2*3*5*7 / tensor.dimension(dim)));
|
||||
|
||||
for (size_t n = 0; n < tensor_arg.dimensions().TotalSize(); ++n) {
|
||||
// Expect min to be in the first index of the reduced dimension
|
||||
VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
|
||||
}
|
||||
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
for (int k = 0; k < 5; ++k) {
|
||||
for (int l = 0; l < 7; ++l) {
|
||||
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
||||
if (ix[dim] != tensor.dimension(dim) - 1) continue;
|
||||
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
|
||||
tensor(ix) = -20.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
|
||||
|
||||
gpu_out.device(gpu_device) = gpu_in.argmin(dim);
|
||||
|
||||
assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
||||
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
||||
|
||||
for (size_t n = 0; n < tensor_arg.dimensions().TotalSize(); ++n) {
|
||||
// Expect max to be in the last index of the reduced dimension
|
||||
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void test_cxx11_tensor_cuda()
|
||||
{
|
||||
CALL_SUBTEST(test_cuda_simple_argmax<RowMajor>());
|
||||
CALL_SUBTEST(test_cuda_simple_argmax<ColMajor>());
|
||||
CALL_SUBTEST(test_cuda_argmax_dim<RowMajor>());
|
||||
CALL_SUBTEST(test_cuda_argmax_dim<ColMajor>());
|
||||
CALL_SUBTEST(test_cuda_argmin_dim<RowMajor>());
|
||||
CALL_SUBTEST(test_cuda_argmin_dim<ColMajor>());
|
||||
}
|
Loading…
Reference in New Issue
Block a user