mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
improve ref tables
This commit is contained in:
parent
e078bb2637
commit
f3c64c7cce
@ -75,11 +75,11 @@ Conversion between the matrix and array worlds:
|
||||
\code
|
||||
Array44f a1, a1;
|
||||
Matrix4f m1, m2;
|
||||
m1 = a1 * a2; // OK, coeffwise product
|
||||
a1 = m1 * m2; // OK, matrix product
|
||||
a2 = a1 + m1.array();
|
||||
m2 = a1.matrix() + m1;
|
||||
ArrayWrapper<Matrix4f> m1a(m1); // m1a is an alias for m1.array(), they share the same coefficients
|
||||
m1 = a1 * a2; // coeffwise product, implicit conversion from array to matrix.
|
||||
a1 = m1 * m2; // matrix product, implicit conversion from matrix to array.
|
||||
a2 = a1 + m1.array(); // mixing array and matrix is forbidden
|
||||
m2 = a1.matrix() + m1; // and explicit conversion is required.
|
||||
ArrayWrapper<Matrix4f> m1a(m1); // m1a is an alias for m1.array(), they share the same coefficients
|
||||
MatrixWrapper<Array44f> a1m(a1);
|
||||
\endcode
|
||||
|
||||
@ -99,7 +99,7 @@ Vector2f v1(x, y);
|
||||
Array3i v2(x, y, z);
|
||||
Vector4d v3(x, y, z, w);
|
||||
|
||||
VectorXf v5;
|
||||
VectorXf v5; // empty object
|
||||
ArrayXf v6(size);
|
||||
\endcode</td><td>\code
|
||||
Matrix4f m1;
|
||||
@ -107,11 +107,10 @@ Matrix4f m1;
|
||||
|
||||
|
||||
|
||||
MatrixXf m5;
|
||||
MatrixXf m5; // empty object
|
||||
MatrixXf m6(nb_rows, nb_columns);
|
||||
\endcode</td><td>
|
||||
The coeffs are left uninitialized \n \n
|
||||
\n \n Empty object \n The coeffs are left uninitialized</td></tr>
|
||||
\endcode</td><td class="note">
|
||||
By default, the coefficients \n are left uninitialized</td></tr>
|
||||
<tr><td>Comma initializer</td>
|
||||
<td>\code
|
||||
Vector3f v1; v1 << x, y, z;
|
||||
@ -145,7 +144,7 @@ matrix.rows(); matrix.cols();
|
||||
matrix.innerSize(); matrix.outerSize();
|
||||
matrix.innerStride(); matrix.outerStride();
|
||||
matrix.data();
|
||||
\endcode</td><td>\n Inner/Outer* are storage order dependent</td></tr>
|
||||
\endcode</td><td class="note">\n Inner/Outer* are storage order dependent</td></tr>
|
||||
<tr><td>Compile-time info</td>
|
||||
<td colspan="2">\code
|
||||
ObjectType::Scalar ObjectType::RowsAtCompileTime
|
||||
@ -165,7 +164,7 @@ matrix.resize(Eigen::NoChange, nb_cols);
|
||||
matrix.resize(nb_rows, Eigen::NoChange);
|
||||
matrix.resizeLike(other_matrix);
|
||||
matrix.conservativeResize(nb_rows, nb_cols);
|
||||
\endcode</td><td></td>no-op if the new sizes match,\n otherwise data are lost \n \n resizing with data preservation</tr>
|
||||
\endcode</td><td class="note">no-op if the new sizes match,\n otherwise data are lost \n \n resizing with data preservation</td></tr>
|
||||
|
||||
<tr><td>Coeff access with \n range checking</td>
|
||||
<td>\code
|
||||
@ -175,7 +174,7 @@ vector[i] vector.y()
|
||||
vector.w()
|
||||
\endcode</td><td>\code
|
||||
matrix(i,j)
|
||||
\endcode</td><td><em class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</em></td></tr>
|
||||
\endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr>
|
||||
|
||||
<tr><td>Coeff access without \n range checking</td>
|
||||
<td>\code
|
||||
@ -190,7 +189,7 @@ matrix.coeffRef(i,j)
|
||||
<td colspan="2">\code
|
||||
object = expression;
|
||||
object_of_float = expression_of_double.cast<float>();
|
||||
\endcode</td><td>the destination is automatically resized (if possible)</td></tr>
|
||||
\endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr>
|
||||
|
||||
</table>
|
||||
|
||||
@ -289,27 +288,27 @@ VectorXf::Unit(4,1) == Vector4f(0,1,0,0)
|
||||
|
||||
|
||||
|
||||
\subsection QuickRef_Map Map
|
||||
\subsection QuickRef_Map Mapping external arrays
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr>
|
||||
<td>Contiguous memory</td>
|
||||
<td>Contiguous \n memory</td>
|
||||
<td>\code
|
||||
float data[] = {1,2,3,4};
|
||||
Map<Vector3f> v1(data); // uses v1 as a Vector3f object
|
||||
Map<ArrayXf> v2(data,3); // uses v2 as a ArrayXf object
|
||||
Map<Array22f> m1(data); // uses m1 as a Array22f object
|
||||
Map<MatrixXf> m2(data,2,2); // uses m2 as a MatrixXf object
|
||||
Map<Vector3f> v1(data); // uses v1 as a Vector3f object
|
||||
Map<ArrayXf> v2(data,3); // uses v2 as a ArrayXf object
|
||||
Map<Array22f> m1(data); // uses m1 as a Array22f object
|
||||
Map<MatrixXf> m2(data,2,2); // uses m2 as a MatrixXf object
|
||||
\endcode</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>Typical usage of strides</td>
|
||||
<td>Typical usage \n of strides</td>
|
||||
<td>\code
|
||||
float data[] = {1,2,3,4,5,6,7,8,9};
|
||||
Map<VectorXf,0,InnerStride<2> > v1(data,3); // == [1,3,5]
|
||||
Map<VectorXf,0,InnerStride<> > v2(data,3,InnerStride<>(3)); // == [1,4,7]
|
||||
Map<MatrixXf,0,OuterStride<> > m1(data,2,3,OuterStride<>(3)); // == |1,4,7|
|
||||
Map<MatrixXf,0,OuterStride<3> > m2(data,2,3); // |2,5,8|
|
||||
Map<VectorXf,0,InnerStride<2> > v1(data,3); // = [1,3,5]
|
||||
Map<VectorXf,0,InnerStride<> > v2(data,3,InnerStride<>(3)); // = [1,4,7]
|
||||
Map<MatrixXf,0,OuterStride<3> > m2(data,2,3); // both lines |1,4,7|
|
||||
Map<MatrixXf,0,OuterStride<> > m1(data,2,3,OuterStride<>(3)); // are equal to: |2,5,8|
|
||||
\endcode</td>
|
||||
</tr>
|
||||
</table>
|
||||
@ -320,32 +319,32 @@ Map<MatrixXf,0,OuterStride<3> > m2(data,2,3); // |2,5,8|
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr><td>
|
||||
add/subtract</td><td>\code
|
||||
mat3 = mat1 + mat2; mat3 += mat1;
|
||||
mat3 = mat1 - mat2; mat3 -= mat1;\endcode
|
||||
add \n subtract</td><td>\code
|
||||
mat3 = mat1 + mat2; mat3 += mat1;
|
||||
mat3 = mat1 - mat2; mat3 -= mat1;\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
scalar product</td><td>\code
|
||||
mat3 = mat1 * s1; mat3 = s1 * mat1; mat3 *= s1;
|
||||
mat3 = mat1 / s1; mat3 /= s1;\endcode
|
||||
mat3 = mat1 * s1; mat3 *= s1; mat3 = s1 * mat1;
|
||||
mat3 = mat1 / s1; mat3 /= s1;\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
matrix/vector product \matrixworld</td><td>\code
|
||||
matrix/vector \n products \matrixworld</td><td>\code
|
||||
col2 = mat1 * col1;
|
||||
row2 = row1 * mat1; row1 *= mat1;
|
||||
mat3 = mat1 * mat2; mat3 *= mat1; \endcode
|
||||
row2 = row1 * mat1; row1 *= mat1;
|
||||
mat3 = mat1 * mat2; mat3 *= mat1; \endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
transpose et adjoint \matrixworld</td><td>\code
|
||||
transposition \n adjoint \matrixworld</td><td>\code
|
||||
mat1 = mat2.transpose(); mat1.transposeInPlace();
|
||||
mat1 = mat2.adjoint(); mat1.adjointInPlace();
|
||||
\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
\link MatrixBase::dot() dot \endlink \& inner products \matrixworld</td><td>\code
|
||||
\link MatrixBase::dot() dot \endlink product \n inner product \matrixworld</td><td>\code
|
||||
scalar = vec1.dot(vec2);
|
||||
scalar = col1.adjoint() * col2;
|
||||
scalar = (col1.adjoint() * col2).value();
|
||||
scalar = vec1.dot(vec2);\endcode
|
||||
scalar = (col1.adjoint() * col2).value();\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
outer product \matrixworld</td><td>\code
|
||||
@ -353,7 +352,7 @@ mat = col1 * col2.transpose();\endcode
|
||||
</td></tr>
|
||||
|
||||
<tr><td>
|
||||
\link MatrixBase::norm() norm \endlink and \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code
|
||||
\link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code
|
||||
scalar = vec1.norm(); scalar = vec1.squaredNorm()
|
||||
vec2 = vec1.normalized(); vec1.normalize(); // inplace \endcode
|
||||
</td></tr>
|
||||
@ -400,7 +399,7 @@ array1 < array2 array1 > array2 array1 < scalar array1 > scalar
|
||||
array1 <= array2 array1 >= array2 array1 <= scalar array1 >= scalar
|
||||
array1 == array2 array1 != array2 array1 == scalar array1 != scalar
|
||||
\endcode</td></tr>
|
||||
<tr><td>Special functions \n and STL variants</td><td>\code
|
||||
<tr><td>Trigo, power, and \n misc functions \n and the STL variants</td><td>\code
|
||||
array1.min(array2) std::min(array1,array2)
|
||||
array1.max(array2) std::max(array1,array2)
|
||||
array1.abs2()
|
||||
@ -424,7 +423,8 @@ array1.tan() std::tan(array1)
|
||||
|
||||
Eigen provides several reduction methods such as:
|
||||
\link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink,
|
||||
\link DenseBase::sum() sum() \endlink, \link MatrixBase::trace() trace() \endlink \matrixworld,
|
||||
\link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink,
|
||||
\link MatrixBase::trace() trace() \endlink \matrixworld,
|
||||
\link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld,
|
||||
\link DenseBase::all() all() \endlink \redstar,and \link DenseBase::any() any() \endlink \redstar.
|
||||
All reduction operations can be done matrix-wise,
|
||||
@ -444,14 +444,21 @@ mat = 2 7 8
|
||||
\endcode</td></tr>
|
||||
</table>
|
||||
|
||||
Also note that maxCoeff and minCoeff can takes optional arguments returning the coordinates of the respective min/max coeff: \link DenseBase::maxCoeff(int*,int*) const maxCoeff(int* i, int* j) \endlink, \link DenseBase::minCoeff(int*,int*) const minCoeff(int* i, int* j) \endlink.
|
||||
|
||||
<span class="note">\b Side \b note: The all() and any() functions are especially useful in combination with coeff-wise comparison operators.</span>
|
||||
Special versions of \link DenseBase::minCoeff(int*,int*) minCoeff \endlink and \link DenseBase::maxCoeff(int*,int*) maxCoeff \endlink:
|
||||
\code
|
||||
int i, j;
|
||||
s = vector.minCoeff(&i); // s == vector[i]
|
||||
s = matrix.maxCoeff(&i, &j); // s == matrix(i,j)
|
||||
\endcode
|
||||
Typical use cases of all() and any():
|
||||
\code
|
||||
if((array1 > 0).all()) ... // if all coefficients of array1 are greater than 0 ...
|
||||
if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ...
|
||||
\endcode
|
||||
|
||||
|
||||
|
||||
|
||||
<a href="#" class="top">top</a>\section QuickRef_Blocks Matrix blocks
|
||||
<a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices
|
||||
|
||||
Read-write access to a \link DenseBase::col(int) column \endlink
|
||||
or a \link DenseBase::row(int) row \endlink of a matrix (or array):
|
||||
@ -501,7 +508,7 @@ Read-write access to sub-matrices:</td><td></td><td></td></tr>
|
||||
mat1.bottomRows<rows>()
|
||||
mat1.leftCols<cols>()
|
||||
mat1.rightCols<cols>()\endcode
|
||||
<td>specialized versions of block() when the block fit two corners</td></tr>
|
||||
<td>specialized versions of block() \n when the block fit two corners</td></tr>
|
||||
</table>
|
||||
|
||||
|
||||
@ -514,7 +521,7 @@ Read-write access to sub-matrices:</td><td></td><td></td></tr>
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr><td>
|
||||
\link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code
|
||||
view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code
|
||||
mat1 = vec1.asDiagonal();\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
@ -522,13 +529,13 @@ Declare a diagonal matrix</td><td>\code
|
||||
DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
|
||||
diag1.diagonal() = vector;\endcode
|
||||
</td></tr>
|
||||
<tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td>
|
||||
<tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(int) super/sub diagonals \endlink of a matrix as a vector (read/write)</td>
|
||||
<td>\code
|
||||
vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal
|
||||
vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal
|
||||
vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal
|
||||
vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal
|
||||
vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal
|
||||
vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal
|
||||
vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal
|
||||
vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal
|
||||
vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal
|
||||
vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal
|
||||
\endcode</td>
|
||||
</tr>
|
||||
|
||||
@ -545,13 +552,12 @@ mat3 = mat1 * diag1.inverse()
|
||||
|
||||
\subsection QuickRef_TriangularView Triangular views
|
||||
|
||||
TriangularView allows to get views on a triangular part of a dense matrix and perform optimized operations on it. The opposite triangular is never referenced and can be
|
||||
used to store other information.
|
||||
TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information.
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr><td>
|
||||
Reference a read/write triangular part of a given \n
|
||||
matrix (or expression) m with optional unit diagonal:
|
||||
Reference to a triangular with optional \n
|
||||
unit or null diagonal (read/write):
|
||||
</td><td>\code
|
||||
m.triangularView<Xxx>()
|
||||
\endcode \n
|
||||
@ -574,19 +580,21 @@ m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2
|
||||
m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Solving linear equations:\n(\f$ m_2 := m_1^{-1} m_2 \f$)
|
||||
</td><td>\code
|
||||
m1.triangularView<Eigen::UnitLower>().solveInPlace(m2)
|
||||
m1.adjoint().triangularView<Eigen::Upper>().solveInPlace(m2)\endcode
|
||||
Solving linear equations:\n
|
||||
\f$ M_2 := L_1^{-1} M_2 \f$ \n
|
||||
\f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n
|
||||
\f$ M_4 := M_3 U_1^{-1} \f$
|
||||
</td><td>\n \code
|
||||
L1.triangularView<Eigen::UnitLower>().solveInPlace(M2)
|
||||
L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3)
|
||||
U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode
|
||||
</td></tr>
|
||||
</table>
|
||||
|
||||
|
||||
|
||||
\subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views
|
||||
|
||||
Just as for triangular matrix, you can reference any triangular part of a square matrix to see it a selfadjoint
|
||||
matrix and perform special and optimized operations. Again the opposite triangular is never referenced and can be
|
||||
Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint
|
||||
matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be
|
||||
used to store other information.
|
||||
|
||||
<table class="tutorial_code">
|
||||
@ -602,26 +610,26 @@ m3 = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3;
|
||||
m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Rank 1 and rank K update:
|
||||
</td><td>\code
|
||||
// fast version of m1 += s1 * m2 * m2.adjoint():
|
||||
m1.selfadjointView<Eigen::Upper>().rankUpdate(m2,s1);
|
||||
// fast version of m1 -= m2.adjoint() * m2:
|
||||
Rank 1 and rank K update: \n
|
||||
\f$ upper(M_1) += s1 M_2^* M_2 \f$ \n
|
||||
\f$ lower(M_1) -= M_2 M_2^* \f$
|
||||
</td><td>\n \code
|
||||
M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1);
|
||||
m1.selfadjointView<Eigen::Lower>().rankUpdate(m2.adjoint(),-1); \endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Rank 2 update: (\f$ m += s u v^* + s v u^* \f$)
|
||||
Rank 2 update: (\f$ M += s u v^* + s v u^* \f$)
|
||||
</td><td>\code
|
||||
m.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s);
|
||||
M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s);
|
||||
\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Solving linear equations:\n(\f$ m_2 := m_1^{-1} m_2 \f$)
|
||||
Solving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$)
|
||||
</td><td>\code
|
||||
// via a standard Cholesky factorization
|
||||
m1.selfadjointView<Eigen::Upper>().llt().solveInPlace(m2);
|
||||
m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2);
|
||||
// via a Cholesky factorization with pivoting
|
||||
m1.selfadjointView<Eigen::Upper>().ldlt().solveInPlace(m2);
|
||||
m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2);
|
||||
\endcode
|
||||
</td></tr>
|
||||
</table>
|
||||
|
Loading…
Reference in New Issue
Block a user