mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
merging ei_hybrd() and hybrd_template()
This commit is contained in:
parent
1715e2cb3b
commit
f2ff0d3903
@ -25,54 +25,6 @@
|
||||
#ifndef EIGEN_NONLINEAR_MATHFUNCTIONS_H
|
||||
#define EIGEN_NONLINEAR_MATHFUNCTIONS_H
|
||||
|
||||
template<typename Functor, typename Scalar>
|
||||
int ei_hybrd(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
Matrix< Scalar, Dynamic, 1 > &fvec,
|
||||
int &nfev,
|
||||
Matrix< Scalar, Dynamic, Dynamic > &fjac,
|
||||
Matrix< Scalar, Dynamic, 1 > &R,
|
||||
Matrix< Scalar, Dynamic, 1 > &qtf,
|
||||
Matrix< Scalar, Dynamic, 1 > &diag,
|
||||
int mode=1,
|
||||
int nb_of_subdiagonals = -1,
|
||||
int nb_of_superdiagonals = -1,
|
||||
int maxfev = 2000,
|
||||
Scalar factor = Scalar(100.),
|
||||
Scalar xtol = ei_sqrt(epsilon<Scalar>()),
|
||||
Scalar epsfcn = Scalar(0.),
|
||||
int nprint=0
|
||||
)
|
||||
{
|
||||
int n = x.size();
|
||||
int lr = (n*(n+1))/2;
|
||||
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n), wa3(n), wa4(n);
|
||||
|
||||
|
||||
if (nb_of_subdiagonals<0) nb_of_subdiagonals = n-1;
|
||||
if (nb_of_superdiagonals<0) nb_of_superdiagonals = n-1;
|
||||
fvec.resize(n);
|
||||
qtf.resize(n);
|
||||
R.resize(lr);
|
||||
int ldfjac = n;
|
||||
fjac.resize(ldfjac, n);
|
||||
return hybrd_template<Scalar>(
|
||||
Functor::f, 0,
|
||||
n, x.data(), fvec.data(),
|
||||
xtol, maxfev,
|
||||
nb_of_subdiagonals, nb_of_superdiagonals,
|
||||
epsfcn,
|
||||
diag.data(), mode,
|
||||
factor,
|
||||
nprint,
|
||||
nfev,
|
||||
fjac.data(), ldfjac,
|
||||
R.data(), lr,
|
||||
qtf.data(),
|
||||
wa1.data(), wa2.data(), wa3.data(), wa4.data()
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
template<typename Functor, typename Scalar>
|
||||
int ei_hybrj(
|
||||
|
@ -1,18 +1,38 @@
|
||||
|
||||
template<typename Scalar>
|
||||
int hybrd_template(minpack_func_nn fcn, void *p, int n, Scalar *x, Scalar *
|
||||
fvec, Scalar xtol, int maxfev, int ml, int mu,
|
||||
Scalar epsfcn, Scalar *diag, int mode, Scalar factor, int nprint, int &nfev, Scalar *
|
||||
fjac, int ldfjac, Scalar *r__, int lr, Scalar *qtf,
|
||||
Scalar *wa1, Scalar *wa2, Scalar *wa3, Scalar *wa4)
|
||||
template<typename Functor, typename Scalar>
|
||||
int ei_hybrd(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
Matrix< Scalar, Dynamic, 1 > &fvec,
|
||||
int &nfev,
|
||||
Matrix< Scalar, Dynamic, Dynamic > &fjac,
|
||||
Matrix< Scalar, Dynamic, 1 > &R,
|
||||
Matrix< Scalar, Dynamic, 1 > &qtf,
|
||||
Matrix< Scalar, Dynamic, 1 > &diag,
|
||||
int mode=1,
|
||||
int nb_of_subdiagonals = -1,
|
||||
int nb_of_superdiagonals = -1,
|
||||
int maxfev = 2000,
|
||||
Scalar factor = Scalar(100.),
|
||||
Scalar xtol = ei_sqrt(epsilon<Scalar>()),
|
||||
Scalar epsfcn = Scalar(0.),
|
||||
int nprint=0
|
||||
)
|
||||
{
|
||||
/* Initialized data */
|
||||
const int n = x.size();
|
||||
int lr = (n*(n+1))/2;
|
||||
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n), wa3(n), wa4(n);
|
||||
|
||||
/* System generated locals */
|
||||
int fjac_offset;
|
||||
|
||||
if (nb_of_subdiagonals<0) nb_of_subdiagonals = n-1;
|
||||
if (nb_of_superdiagonals<0) nb_of_superdiagonals = n-1;
|
||||
fvec.resize(n);
|
||||
qtf.resize(n);
|
||||
R.resize(lr);
|
||||
int ldfjac = n;
|
||||
fjac.resize(ldfjac, n);
|
||||
|
||||
/* Local variables */
|
||||
int i, j, l, jm1, iwa[1];
|
||||
int i, j, l, iwa[1];
|
||||
Scalar sum;
|
||||
int sing;
|
||||
int iter;
|
||||
@ -29,19 +49,6 @@ int hybrd_template(minpack_func_nn fcn, void *p, int n, Scalar *x, Scalar *
|
||||
Scalar actred, prered;
|
||||
int info;
|
||||
|
||||
/* Parameter adjustments */
|
||||
--wa4;
|
||||
--wa3;
|
||||
--wa2;
|
||||
--wa1;
|
||||
--qtf;
|
||||
--diag;
|
||||
--fvec;
|
||||
--x;
|
||||
fjac_offset = 1 + ldfjac;
|
||||
fjac -= fjac_offset;
|
||||
--r__;
|
||||
|
||||
/* Function Body */
|
||||
|
||||
info = 0;
|
||||
@ -50,14 +57,14 @@ int hybrd_template(minpack_func_nn fcn, void *p, int n, Scalar *x, Scalar *
|
||||
|
||||
/* check the input parameters for errors. */
|
||||
|
||||
if (n <= 0 || xtol < 0. || maxfev <= 0 || ml < 0 || mu < 0 ||
|
||||
if (n <= 0 || xtol < 0. || maxfev <= 0 || nb_of_subdiagonals < 0 || nb_of_superdiagonals < 0 ||
|
||||
factor <= 0. || ldfjac < n || lr < n * (n + 1) / 2) {
|
||||
goto L300;
|
||||
}
|
||||
if (mode != 2) {
|
||||
goto L20;
|
||||
}
|
||||
for (j = 1; j <= n; ++j) {
|
||||
for (j = 0; j < n; ++j) {
|
||||
if (diag[j] <= 0.) {
|
||||
goto L300;
|
||||
}
|
||||
@ -68,18 +75,18 @@ L20:
|
||||
/* evaluate the function at the starting point */
|
||||
/* and calculate its norm. */
|
||||
|
||||
iflag = (*fcn)(p, n, &x[1], &fvec[1], 1);
|
||||
iflag = Functor::f(0, n, x.data(), fvec.data(), 1);
|
||||
nfev = 1;
|
||||
if (iflag < 0) {
|
||||
goto L300;
|
||||
}
|
||||
fnorm = ei_enorm<Scalar>(n, &fvec[1]);
|
||||
fnorm = fvec.stableNorm();
|
||||
|
||||
/* determine the number of calls to fcn needed to compute */
|
||||
/* the jacobian matrix. */
|
||||
|
||||
/* Computing MIN */
|
||||
msum = min(ml + mu + 1, n);
|
||||
msum = min(nb_of_subdiagonals + nb_of_superdiagonals + 1, n);
|
||||
|
||||
/* initialize iteration counter and monitors. */
|
||||
|
||||
@ -96,8 +103,8 @@ L30:
|
||||
|
||||
/* calculate the jacobian matrix. */
|
||||
|
||||
iflag = fdjac1(fcn, p, n, &x[1], &fvec[1], &fjac[fjac_offset], ldfjac,
|
||||
ml, mu, epsfcn, &wa1[1], &wa2[1]);
|
||||
iflag = fdjac1(Functor::f, 0, n, x.data(), fvec.data(), fjac.data(), ldfjac,
|
||||
nb_of_subdiagonals, nb_of_superdiagonals, epsfcn, wa1.data(), wa2.data());
|
||||
nfev += msum;
|
||||
if (iflag < 0) {
|
||||
goto L300;
|
||||
@ -105,8 +112,7 @@ L30:
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
|
||||
qrfac(n, n, &fjac[fjac_offset], ldfjac, FALSE_, iwa, 1, &wa1[1], &
|
||||
wa2[1], &wa3[1]);
|
||||
qrfac(n, n, fjac.data(), ldfjac, FALSE_, iwa, 1, wa1.data(), wa2.data(), wa3.data());
|
||||
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
@ -117,7 +123,7 @@ L30:
|
||||
if (mode == 2) {
|
||||
goto L50;
|
||||
}
|
||||
for (j = 1; j <= n; ++j) {
|
||||
for (j = 0; j < n; ++j) {
|
||||
diag[j] = wa2[j];
|
||||
if (wa2[j] == 0.) {
|
||||
diag[j] = 1.;
|
||||
@ -129,11 +135,11 @@ L50:
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
|
||||
for (j = 1; j <= n; ++j) {
|
||||
for (j = 0; j < n; ++j) {
|
||||
wa3[j] = diag[j] * x[j];
|
||||
/* L60: */
|
||||
}
|
||||
xnorm = ei_enorm<Scalar>(n, &wa3[1]);
|
||||
xnorm = wa3.stableNorm();
|
||||
delta = factor * xnorm;
|
||||
if (delta == 0.) {
|
||||
delta = factor;
|
||||
@ -142,22 +148,22 @@ L70:
|
||||
|
||||
/* form (q transpose)*fvec and store in qtf. */
|
||||
|
||||
for (i = 1; i <= n; ++i) {
|
||||
for (i = 0; i < n; ++i) {
|
||||
qtf[i] = fvec[i];
|
||||
/* L80: */
|
||||
}
|
||||
for (j = 1; j <= n; ++j) {
|
||||
if (fjac[j + j * ldfjac] == 0.) {
|
||||
for (j = 0; j < n; ++j) {
|
||||
if (fjac(j,j) == 0.) {
|
||||
goto L110;
|
||||
}
|
||||
sum = 0.;
|
||||
for (i = j; i <= n; ++i) {
|
||||
sum += fjac[i + j * ldfjac] * qtf[i];
|
||||
for (i = j; i < n; ++i) {
|
||||
sum += fjac(i,j) * qtf[i];
|
||||
/* L90: */
|
||||
}
|
||||
temp = -sum / fjac[j + j * ldfjac];
|
||||
for (i = j; i <= n; ++i) {
|
||||
qtf[i] += fjac[i + j * ldfjac] * temp;
|
||||
temp = -sum / fjac(j,j);
|
||||
for (i = j; i < n; ++i) {
|
||||
qtf[i] += fjac(i,j) * temp;
|
||||
/* L100: */
|
||||
}
|
||||
L110:
|
||||
@ -168,19 +174,16 @@ L110:
|
||||
/* copy the triangular factor of the qr factorization into r. */
|
||||
|
||||
sing = FALSE_;
|
||||
for (j = 1; j <= n; ++j) {
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = j;
|
||||
jm1 = j - 1;
|
||||
if (jm1 < 1) {
|
||||
goto L140;
|
||||
if (j) {
|
||||
for (i = 0; i < j; ++i) {
|
||||
R[l] = fjac(i,j);
|
||||
l = l + n - i -1;
|
||||
/* L130: */
|
||||
}
|
||||
}
|
||||
for (i = 1; i <= jm1; ++i) {
|
||||
r__[l] = fjac[i + j * ldfjac];
|
||||
l = l + n - i;
|
||||
/* L130: */
|
||||
}
|
||||
L140:
|
||||
r__[l] = wa1[j];
|
||||
R[l] = wa1[j];
|
||||
if (wa1[j] == 0.) {
|
||||
sing = TRUE_;
|
||||
}
|
||||
@ -189,7 +192,7 @@ L140:
|
||||
|
||||
/* accumulate the orthogonal factor in fjac. */
|
||||
|
||||
qform(n, n, &fjac[fjac_offset], ldfjac, &wa1[1]);
|
||||
qform(n, n, fjac.data(), ldfjac, wa1.data());
|
||||
|
||||
/* rescale if necessary. */
|
||||
|
||||
@ -197,7 +200,7 @@ L140:
|
||||
goto L170;
|
||||
}
|
||||
/* Computing MAX */
|
||||
for (j = 1; j <= n; ++j)
|
||||
for (j = 0; j < n; ++j)
|
||||
diag[j] = max(diag[j], wa2[j]);
|
||||
L170:
|
||||
|
||||
@ -212,7 +215,7 @@ L180:
|
||||
}
|
||||
iflag = 0;
|
||||
if ((iter - 1) % nprint == 0) {
|
||||
iflag = (*fcn)(p, n, &x[1], &fvec[1], 0);
|
||||
iflag = Functor::f(0, n, x.data(), fvec.data(), 0);
|
||||
}
|
||||
if (iflag < 0) {
|
||||
goto L300;
|
||||
@ -221,18 +224,17 @@ L190:
|
||||
|
||||
/* determine the direction p. */
|
||||
|
||||
dogleg(n, &r__[1], lr, &diag[1], &qtf[1], delta, &wa1[1], &wa2[1], &wa3[
|
||||
1]);
|
||||
dogleg(n, R.data(), lr, diag.data(), qtf.data(), delta, wa1.data(), wa2.data(), wa3.data());
|
||||
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
|
||||
for (j = 1; j <= n; ++j) {
|
||||
for (j = 0; j < n; ++j) {
|
||||
wa1[j] = -wa1[j];
|
||||
wa2[j] = x[j] + wa1[j];
|
||||
wa3[j] = diag[j] * wa1[j];
|
||||
/* L200: */
|
||||
}
|
||||
pnorm = ei_enorm<Scalar>(n, &wa3[1]);
|
||||
pnorm = wa3.stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
|
||||
@ -242,12 +244,12 @@ L190:
|
||||
|
||||
/* evaluate the function at x + p and calculate its norm. */
|
||||
|
||||
iflag = (*fcn)(p, n, &wa2[1], &wa4[1], 1);
|
||||
iflag = Functor::f(0, n, wa2.data(), wa4.data(), 1);
|
||||
++(nfev);
|
||||
if (iflag < 0) {
|
||||
goto L300;
|
||||
}
|
||||
fnorm1 = ei_enorm<Scalar>(n, &wa4[1]);
|
||||
fnorm1 = wa4.stableNorm();
|
||||
|
||||
/* compute the scaled actual reduction. */
|
||||
|
||||
@ -257,18 +259,18 @@ L190:
|
||||
|
||||
/* compute the scaled predicted reduction. */
|
||||
|
||||
l = 1;
|
||||
for (i = 1; i <= n; ++i) {
|
||||
l = 0;
|
||||
for (i = 0; i < n; ++i) {
|
||||
sum = 0.;
|
||||
for (j = i; j <= n; ++j) {
|
||||
sum += r__[l] * wa1[j];
|
||||
for (j = i; j < n; ++j) {
|
||||
sum += R[l] * wa1[j];
|
||||
++l;
|
||||
/* L210: */
|
||||
}
|
||||
wa3[i] = qtf[i] + sum;
|
||||
/* L220: */
|
||||
}
|
||||
temp = ei_enorm<Scalar>(n, &wa3[1]);
|
||||
temp = wa3.stableNorm();
|
||||
prered = 0.;
|
||||
if (temp < fnorm) /* Computing 2nd power */
|
||||
prered = 1. - ei_abs2(temp / fnorm);
|
||||
@ -308,13 +310,13 @@ L240:
|
||||
|
||||
/* successful iteration. update x, fvec, and their norms. */
|
||||
|
||||
for (j = 1; j <= n; ++j) {
|
||||
for (j = 0; j < n; ++j) {
|
||||
x[j] = wa2[j];
|
||||
wa2[j] = diag[j] * x[j];
|
||||
fvec[j] = wa4[j];
|
||||
/* L250: */
|
||||
}
|
||||
xnorm = ei_enorm<Scalar>(n, &wa2[1]);
|
||||
temp = wa2.stableNorm();
|
||||
fnorm = fnorm1;
|
||||
++iter;
|
||||
L260:
|
||||
@ -365,10 +367,10 @@ L260:
|
||||
/* calculate the rank one modification to the jacobian */
|
||||
/* and update qtf if necessary. */
|
||||
|
||||
for (j = 1; j <= n; ++j) {
|
||||
for (j = 0; j < n; ++j) {
|
||||
sum = 0.;
|
||||
for (i = 1; i <= n; ++i) {
|
||||
sum += fjac[i + j * ldfjac] * wa4[i];
|
||||
for (i = 0; i < n; ++i) {
|
||||
sum += fjac(i,j) * wa4[i];
|
||||
/* L270: */
|
||||
}
|
||||
wa2[j] = (sum - wa3[j]) / pnorm;
|
||||
@ -381,9 +383,9 @@ L260:
|
||||
|
||||
/* compute the qr factorization of the updated jacobian. */
|
||||
|
||||
r1updt(n, n, &r__[1], lr, &wa1[1], &wa2[1], &wa3[1], &sing);
|
||||
r1mpyq(n, n, &fjac[fjac_offset], ldfjac, &wa2[1], &wa3[1]);
|
||||
r1mpyq(1, n, &qtf[1], 1, &wa2[1], &wa3[1]);
|
||||
r1updt(n, n, R.data(), lr, wa1.data(), wa2.data(), wa3.data(), &sing);
|
||||
r1mpyq(n, n, fjac.data(), ldfjac, wa2.data(), wa3.data());
|
||||
r1mpyq(1, n, qtf.data(), 1, wa2.data(), wa3.data());
|
||||
|
||||
/* end of the inner loop. */
|
||||
|
||||
@ -402,7 +404,7 @@ L300:
|
||||
info = iflag;
|
||||
}
|
||||
if (nprint > 0) {
|
||||
(*fcn)(p, n, &x[1], &fvec[1], 0);
|
||||
Functor::f(0, n, x.data(), fvec.data(), 0);
|
||||
}
|
||||
return info;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user