mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
* remove EIGEN_DONT_INLINE that harm performance for small sizes
* normalize left Jacobi rotations to avoid having to swap rows * set precision to 2*machine_epsilon instead of machine_epsilon, we lose 1 bit of precision but gain between 10% and 100% speed, plus reduce the risk that some day we hit a bad matrix where it's impossible to approach machine precision
This commit is contained in:
parent
76a3089a43
commit
f2536416da
@ -50,7 +50,7 @@ void ei_apply_rotation_in_the_plane(VectorX& x, VectorY& y, typename VectorX::Sc
|
||||
template<typename Scalar>
|
||||
struct ei_apply_rotation_in_the_plane_selector<Scalar,Dynamic>
|
||||
{
|
||||
static EIGEN_DONT_INLINE void run(Scalar* x, Scalar* y, int size, Scalar c, Scalar s, int incrx, int incry)
|
||||
static void run(Scalar* x, Scalar* y, int size, Scalar c, Scalar s, int incrx, int incry)
|
||||
{
|
||||
for(int i=0; i<size; ++i)
|
||||
{
|
||||
@ -68,7 +68,7 @@ struct ei_apply_rotation_in_the_plane_selector<Scalar,Dynamic>
|
||||
template<typename Scalar>
|
||||
struct ei_apply_rotation_in_the_plane_selector<Scalar,1>
|
||||
{
|
||||
static EIGEN_DONT_INLINE void run(Scalar* x, Scalar* y, int size, Scalar c, Scalar s, int, int)
|
||||
static void run(Scalar* x, Scalar* y, int size, Scalar c, Scalar s, int, int)
|
||||
{
|
||||
typedef typename ei_packet_traits<Scalar>::type Packet;
|
||||
enum { PacketSize = ei_packet_traits<Scalar>::size, Peeling = 2 };
|
||||
|
@ -26,7 +26,7 @@
|
||||
#define EIGEN_JACOBI_H
|
||||
|
||||
template<typename Derived>
|
||||
void MatrixBase<Derived>::applyJacobiOnTheLeft(int p, int q, Scalar c, Scalar s)
|
||||
inline void MatrixBase<Derived>::applyJacobiOnTheLeft(int p, int q, Scalar c, Scalar s)
|
||||
{
|
||||
RowXpr x(row(p));
|
||||
RowXpr y(row(q));
|
||||
@ -34,7 +34,7 @@ void MatrixBase<Derived>::applyJacobiOnTheLeft(int p, int q, Scalar c, Scalar s)
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
void MatrixBase<Derived>::applyJacobiOnTheRight(int p, int q, Scalar c, Scalar s)
|
||||
inline void MatrixBase<Derived>::applyJacobiOnTheRight(int p, int q, Scalar c, Scalar s)
|
||||
{
|
||||
ColXpr x(col(p));
|
||||
ColXpr y(col(q));
|
||||
@ -89,5 +89,17 @@ inline bool MatrixBase<Derived>::makeJacobiForAAt(int p, int q, Scalar *c, Scala
|
||||
c,s);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
inline void ei_normalizeJacobi(Scalar *c, Scalar *s, const Scalar& x, const Scalar& y)
|
||||
{
|
||||
Scalar a = x * *c - y * *s;
|
||||
Scalar b = x * *s + y * *c;
|
||||
if(ei_abs(b)>ei_abs(a)) {
|
||||
Scalar x = *c;
|
||||
*c = -*s;
|
||||
*s = x;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif // EIGEN_JACOBI_H
|
||||
|
@ -102,6 +102,7 @@ void JacobiSquareSVD<MatrixType, ComputeU, ComputeV>::compute(const MatrixType&
|
||||
if(ComputeU) m_matrixU = MatrixUType::Identity(size,size);
|
||||
if(ComputeV) m_matrixV = MatrixUType::Identity(size,size);
|
||||
m_singularValues.resize(size);
|
||||
const RealScalar precision = 2 * machine_epsilon<Scalar>();
|
||||
|
||||
sweep_again:
|
||||
for(int p = 1; p < size; ++p)
|
||||
@ -110,7 +111,7 @@ sweep_again:
|
||||
{
|
||||
Scalar c, s;
|
||||
while(std::max(ei_abs(work_matrix.coeff(p,q)),ei_abs(work_matrix.coeff(q,p)))
|
||||
> std::max(ei_abs(work_matrix.coeff(p,p)),ei_abs(work_matrix.coeff(q,q)))*machine_epsilon<Scalar>())
|
||||
> std::max(ei_abs(work_matrix.coeff(p,p)),ei_abs(work_matrix.coeff(q,q)))*precision)
|
||||
{
|
||||
if(work_matrix.makeJacobiForAtA(p,q,&c,&s))
|
||||
{
|
||||
@ -119,24 +120,16 @@ sweep_again:
|
||||
}
|
||||
if(work_matrix.makeJacobiForAAt(p,q,&c,&s))
|
||||
{
|
||||
Scalar x = ei_abs2(work_matrix.coeff(p,p)) + ei_abs2(work_matrix.coeff(p,q));
|
||||
Scalar y = ei_conj(work_matrix.coeff(q,p))*work_matrix.coeff(p,p) + ei_conj(work_matrix.coeff(q,q))*work_matrix.coeff(p,q);
|
||||
Scalar z = ei_abs2(work_matrix.coeff(q,p)) + ei_abs2(work_matrix.coeff(q,q));
|
||||
ei_normalizeJacobi(&c, &s, work_matrix.coeff(p,p), work_matrix.coeff(q,p)),
|
||||
work_matrix.applyJacobiOnTheLeft(p,q,c,s);
|
||||
if(ComputeU) m_matrixU.applyJacobiOnTheRight(p,q,c,s);
|
||||
if(std::max(ei_abs(work_matrix.coeff(p,q)),ei_abs(work_matrix.coeff(q,p)))
|
||||
> std::max(ei_abs(work_matrix.coeff(p,p)),ei_abs(work_matrix.coeff(q,q))) )
|
||||
{
|
||||
work_matrix.row(p).swap(work_matrix.row(q));
|
||||
if(ComputeU) m_matrixU.col(p).swap(m_matrixU.col(q));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
RealScalar biggestOnDiag = work_matrix.diagonal().cwise().abs().maxCoeff();
|
||||
RealScalar maxAllowedOffDiag = biggestOnDiag * machine_epsilon<Scalar>();
|
||||
RealScalar maxAllowedOffDiag = biggestOnDiag * precision;
|
||||
for(int p = 0; p < size; ++p)
|
||||
{
|
||||
for(int q = 0; q < p; ++q)
|
||||
|
Loading…
Reference in New Issue
Block a user