mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-19 18:40:38 +08:00
Fix compilation of HouseholderQR and ColPivotingHouseholderQR for non-square fixed-size matrices.
For Colpiv that was just changing MatrixQType to MatrixType in the instantiation of HouseholderSequence. For HouseholderQR I also re-ported the solve method from Colpiv as there were multiple issues.
This commit is contained in:
parent
67bf7c90c5
commit
eeabd18afc
@ -62,7 +62,7 @@ template<typename MatrixType> class ColPivotingHouseholderQR
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
|
||||
typedef Matrix<RealScalar, 1, ColsAtCompileTime> RealRowVectorType;
|
||||
typedef typename HouseholderSequence<MatrixQType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType;
|
||||
typedef typename HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
|
@ -62,7 +62,7 @@ template<typename MatrixType> class HouseholderQR
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, AutoAlign | (ei_traits<MatrixType>::Flags&RowMajorBit ? RowMajor : ColMajor)> MatrixQType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1> HCoeffsType;
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
||||
typedef typename HouseholderSequence<MatrixQType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType;
|
||||
typedef typename HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
@ -206,18 +206,22 @@ void HouseholderQR<MatrixType>::solve(
|
||||
) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
||||
result->resize(m_qr.cols(), b.cols());
|
||||
const int rows = m_qr.rows();
|
||||
const int cols = b.cols();
|
||||
const int rank = std::min(m_qr.rows(), m_qr.cols());
|
||||
ei_assert(b.rows() == rows);
|
||||
result->resize(rows, cols);
|
||||
|
||||
*result = b;
|
||||
result->applyOnTheLeft(matrixQAsHouseholderSequence().inverse());
|
||||
typename OtherDerived::PlainMatrixType c(b);
|
||||
|
||||
// Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
|
||||
c.applyOnTheLeft(makeHouseholderSequence(m_qr.corner(TopLeft,rows,rank), m_hCoeffs.start(rank)).transpose());
|
||||
|
||||
const int rank = std::min(result->rows(), result->cols());
|
||||
m_qr.corner(TopLeft, rank, rank)
|
||||
.template triangularView<UpperTriangular>()
|
||||
.solveInPlace(result->corner(TopLeft, rank, result->cols()));
|
||||
.solveInPlace(c.corner(TopLeft, rank, c.cols()));
|
||||
|
||||
result->corner(TopLeft, rank, c.cols()) = c.corner(TopLeft,rank, c.cols());
|
||||
result->corner(BottomLeft, result->rows()-rank, c.cols()).setZero();
|
||||
}
|
||||
|
||||
/** \returns the matrix Q */
|
||||
|
38
test/qr.cpp
38
test/qr.cpp
@ -41,20 +41,26 @@ template<typename MatrixType> void qr(const MatrixType& m)
|
||||
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);
|
||||
|
||||
VERIFY_IS_APPROX(a, qrOfA.matrixQ() * r);
|
||||
}
|
||||
|
||||
SquareMatrixType b = a.adjoint() * a;
|
||||
template<typename MatrixType, int Cols2> void qr_fixedsize()
|
||||
{
|
||||
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
Matrix<Scalar,Rows,Cols> m1 = Matrix<Scalar,Rows,Cols>::Random();
|
||||
HouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
|
||||
|
||||
// check tridiagonalization
|
||||
Tridiagonalization<SquareMatrixType> tridiag(b);
|
||||
VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
|
||||
Matrix<Scalar,Rows,Cols> r = qr.matrixQR();
|
||||
// FIXME need better way to construct trapezoid
|
||||
for(int i = 0; i < Rows; i++) for(int j = 0; j < Cols; j++) if(i>j) r(i,j) = Scalar(0);
|
||||
|
||||
// check hessenberg decomposition
|
||||
HessenbergDecomposition<SquareMatrixType> hess(b);
|
||||
VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
|
||||
VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH());
|
||||
b = SquareMatrixType::Random(cols,cols);
|
||||
hess.compute(b);
|
||||
VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
|
||||
VERIFY_IS_APPROX(m1, qr.matrixQ() * r);
|
||||
|
||||
Matrix<Scalar,Cols,Cols2> m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
|
||||
Matrix<Scalar,Rows,Cols2> m3 = m1*m2;
|
||||
m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
|
||||
qr.solve(m3, &m2);
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
}
|
||||
|
||||
template<typename MatrixType> void qr_invertible()
|
||||
@ -105,11 +111,11 @@ template<typename MatrixType> void qr_verify_assert()
|
||||
void test_qr()
|
||||
{
|
||||
for(int i = 0; i < 1; i++) {
|
||||
// FIXME : very weird bug here
|
||||
// CALL_SUBTEST( qr(Matrix2f()) );
|
||||
CALL_SUBTEST( qr(Matrix4d()) );
|
||||
CALL_SUBTEST( qr(MatrixXf(47,40)) );
|
||||
CALL_SUBTEST( qr(MatrixXcd(17,7)) );
|
||||
CALL_SUBTEST( qr(MatrixXf(47,40)) );
|
||||
CALL_SUBTEST( qr(MatrixXcd(17,7)) );
|
||||
CALL_SUBTEST(( qr_fixedsize<Matrix<float,3,4>, 2 >() ));
|
||||
CALL_SUBTEST(( qr_fixedsize<Matrix<double,6,2>, 4 >() ));
|
||||
CALL_SUBTEST(( qr_fixedsize<Matrix<double,2,5>, 7 >() ));
|
||||
}
|
||||
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
|
@ -154,10 +154,9 @@ void test_qr_colpivoting()
|
||||
CALL_SUBTEST( qr<MatrixXf>() );
|
||||
CALL_SUBTEST( qr<MatrixXd>() );
|
||||
CALL_SUBTEST( qr<MatrixXcd>() );
|
||||
CALL_SUBTEST(( qr_fixedsize<Matrix<float,3,5>, 4 >() ));
|
||||
CALL_SUBTEST(( qr_fixedsize<Matrix<double,6,2>, 3 >() ));
|
||||
}
|
||||
|
||||
CALL_SUBTEST(( qr_fixedsize<Matrix<float,3,5>, 4 >() ));
|
||||
CALL_SUBTEST(( qr_fixedsize<Matrix<double,6,2>, 3 >() ));
|
||||
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( qr_invertible<MatrixXf>() );
|
||||
|
Loading…
x
Reference in New Issue
Block a user