Apply argument-dependent lookup on user-defined types. (using std::)

This commit is contained in:
Chen-Pang He 2013-07-20 23:30:37 +08:00
parent dda869051d
commit ede27f5780
2 changed files with 46 additions and 20 deletions

View File

@ -164,10 +164,16 @@ struct MatrixExponential<MatrixType>::ScalingOp
ScalingOp(int squarings) : m_squarings(squarings) { }
inline const RealScalar operator() (const RealScalar& x) const
{ return std::ldexp(x, -m_squarings); }
{
using std::ldexp;
return ldexp(x, -m_squarings);
}
inline const ComplexScalar operator() (const ComplexScalar& x) const
{ return ComplexScalar(std::ldexp(x.real(), -m_squarings), std::ldexp(x.imag(), -m_squarings)); }
{
using std::ldexp;
return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings));
}
private:
int m_squarings;
@ -297,13 +303,14 @@ EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade17(const MatrixType
template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(float)
{
using std::frexp;
if (m_l1norm < 4.258730016922831e-001) {
pade3(m_M);
} else if (m_l1norm < 1.880152677804762e+000) {
pade5(m_M);
} else {
const float maxnorm = 3.925724783138660f;
std::frexp(m_l1norm / maxnorm, &m_squarings);
frexp(m_l1norm / maxnorm, &m_squarings);
if (m_squarings < 0) m_squarings = 0;
MatrixType A = CwiseUnaryOp<ScalingOp, const MatrixType>(m_M, m_squarings);
pade7(A);
@ -313,6 +320,7 @@ void MatrixExponential<MatrixType>::computeUV(float)
template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(double)
{
using std::frexp;
if (m_l1norm < 1.495585217958292e-002) {
pade3(m_M);
} else if (m_l1norm < 2.539398330063230e-001) {
@ -323,7 +331,7 @@ void MatrixExponential<MatrixType>::computeUV(double)
pade9(m_M);
} else {
const double maxnorm = 5.371920351148152;
std::frexp(m_l1norm / maxnorm, &m_squarings);
frexp(m_l1norm / maxnorm, &m_squarings);
if (m_squarings < 0) m_squarings = 0;
MatrixType A = CwiseUnaryOp<ScalingOp, const MatrixType>(m_M, m_squarings);
pade13(A);
@ -333,6 +341,7 @@ void MatrixExponential<MatrixType>::computeUV(double)
template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(long double)
{
using std::frexp;
#if LDBL_MANT_DIG == 53 // double precision
computeUV(double());
#elif LDBL_MANT_DIG <= 64 // extended precision
@ -346,7 +355,7 @@ void MatrixExponential<MatrixType>::computeUV(long double)
pade9(m_M);
} else {
const long double maxnorm = 4.0246098906697353063L;
std::frexp(m_l1norm / maxnorm, &m_squarings);
frexp(m_l1norm / maxnorm, &m_squarings);
if (m_squarings < 0) m_squarings = 0;
MatrixType A = CwiseUnaryOp<ScalingOp, const MatrixType>(m_M, m_squarings);
pade13(A);
@ -364,7 +373,7 @@ void MatrixExponential<MatrixType>::computeUV(long double)
pade13(m_M);
} else {
const long double maxnorm = 3.2579440895405400856599663723517L;
std::frexp(m_l1norm / maxnorm, &m_squarings);
frexp(m_l1norm / maxnorm, &m_squarings);
if (m_squarings < 0) m_squarings = 0;
MatrixType A = CwiseUnaryOp<ScalingOp, const MatrixType>(m_M, m_squarings);
pade17(A);
@ -382,7 +391,7 @@ void MatrixExponential<MatrixType>::computeUV(long double)
pade13(m_M);
} else {
const long double maxnorm = 2.884233277829519311757165057717815L;
std::frexp(m_l1norm / maxnorm, &m_squarings);
frexp(m_l1norm / maxnorm, &m_squarings);
if (m_squarings < 0) m_squarings = 0;
MatrixType A = CwiseUnaryOp<ScalingOp, const MatrixType>(m_M, m_squarings);
pade17(A);

View File

@ -143,11 +143,12 @@ MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar
template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::compute(ResultType& res) const
{
using std::pow;
switch (m_A.rows()) {
case 0:
break;
case 1:
res(0,0) = std::pow(m_A(0,0), m_p);
res(0,0) = pow(m_A(0,0), m_p);
break;
case 2:
compute2x2(res, m_p);
@ -162,6 +163,7 @@ void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& Im
{
int i = 2*degree;
res = (m_p-degree) / (2*i-2) * IminusT;
for (--i; i; --i) {
res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
.solve((i==1 ? -m_p : i&1 ? (-m_p-i/2)/(2*i) : (m_p-i/2)/(2*i-2)) * IminusT).eval();
@ -175,7 +177,6 @@ void MatrixPowerAtomic<MatrixType>::compute2x2(ResultType& res, RealScalar p) co
{
using std::abs;
using std::pow;
res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
for (Index i=1; i < m_A.cols(); ++i) {
@ -193,6 +194,7 @@ void MatrixPowerAtomic<MatrixType>::compute2x2(ResultType& res, RealScalar p) co
template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const
{
using std::ldexp;
const int digits = std::numeric_limits<RealScalar>::digits;
const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision
digits <= 53? 2.789358995219730e-1: // double precision
@ -224,7 +226,7 @@ void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const
computePade(degree, IminusT, res);
for (; numberOfSquareRoots; --numberOfSquareRoots) {
compute2x2(res, std::ldexp(m_p, -numberOfSquareRoots));
compute2x2(res, ldexp(m_p, -numberOfSquareRoots));
res = res.template triangularView<Upper>() * res;
}
compute2x2(res, m_p);
@ -289,19 +291,28 @@ template<typename MatrixType>
inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
{
ComplexScalar logCurr = std::log(curr);
ComplexScalar logPrev = std::log(prev);
int unwindingNumber = std::ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI));
using std::ceil;
using std::exp;
using std::log;
using std::sinh;
ComplexScalar logCurr = log(curr);
ComplexScalar logPrev = log(prev);
int unwindingNumber = ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI));
ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(0, M_PI*unwindingNumber);
return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (curr - prev);
return RealScalar(2) * exp(RealScalar(0.5) * p * (logCurr + logPrev)) * sinh(p * w) / (curr - prev);
}
template<typename MatrixType>
inline typename MatrixPowerAtomic<MatrixType>::RealScalar
MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
{
using std::exp;
using std::log;
using std::sinh;
RealScalar w = numext::atanh2(curr - prev, curr + prev);
return 2 * std::exp(p * (std::log(curr) + std::log(prev)) / 2) * std::sinh(p * w) / (curr - prev);
return 2 * exp(p * (log(curr) + log(prev)) / 2) * sinh(p * w) / (curr - prev);
}
/**
@ -438,11 +449,12 @@ template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
{
using std::pow;
switch (cols()) {
case 0:
break;
case 1:
res(0,0) = std::pow(m_A.coeff(0,0), p);
res(0,0) = pow(m_A.coeff(0,0), p);
break;
default:
RealScalar intpart;
@ -457,7 +469,10 @@ void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
template<typename MatrixType>
void MatrixPower<MatrixType>::split(RealScalar& p, RealScalar& intpart)
{
intpart = std::floor(p);
using std::floor;
using std::pow;
intpart = floor(p);
p -= intpart;
// Perform Schur decomposition if it is not yet performed and the power is
@ -466,7 +481,7 @@ void MatrixPower<MatrixType>::split(RealScalar& p, RealScalar& intpart)
initialize();
// Choose the more stable of intpart = floor(p) and intpart = ceil(p).
if (p > RealScalar(0.5) && p > (1-p) * std::pow(m_conditionNumber, p)) {
if (p > RealScalar(0.5) && p > (1-p) * pow(m_conditionNumber, p)) {
--p;
++intpart;
}
@ -514,7 +529,9 @@ template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
{
RealScalar pp = std::abs(p);
using std::abs;
using std::fmod;
RealScalar pp = abs(p);
if (p<0)
m_tmp = m_A.inverse();
@ -522,7 +539,7 @@ void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
m_tmp = m_A;
while (true) {
if (std::fmod(pp, 2) >= 1)
if (fmod(pp, 2) >= 1)
res = m_tmp * res;
pp /= 2;
if (pp < 1)