big rewrite in Inverse.h

in particular, the API is essentially finalized and the 4x4 case is fixed to be numerically stable.
This commit is contained in:
Benoit Jacob 2009-10-26 11:18:23 -04:00
parent 68d48511b2
commit ec02388a5d
3 changed files with 259 additions and 215 deletions

View File

@ -703,9 +703,12 @@ template<typename Derived> class MatrixBase
const PartialLU<PlainMatrixType> partialLu() const;
const PlainMatrixType inverse() const;
template<typename ResultType>
void computeInverse(ResultType *result) const;
template<typename ResultType>
bool computeInverseWithCheck(ResultType *result ) const;
void computeInverseAndDetWithCheck(
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible,
const RealScalar& absDeterminantThreshold = precision<Scalar>()
) const;
Scalar determinant() const;
/////////// Cholesky module ///////////

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@ -29,74 +29,96 @@
*** Part 1 : optimized implementations for fixed-size 2,3,4 cases ***
********************************************************************/
template<typename XprType, typename MatrixType>
template<typename MatrixType, typename ResultType>
inline void ei_compute_inverse_size2_helper(
const XprType& matrix, const typename MatrixType::Scalar& invdet,
MatrixType* result)
const MatrixType& matrix, const typename ResultType::Scalar& invdet,
ResultType& result)
{
result->coeffRef(0,0) = matrix.coeff(1,1) * invdet;
result->coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
result->coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
result->coeffRef(1,1) = matrix.coeff(0,0) * invdet;
}
template<typename MatrixType>
inline void ei_compute_inverse_size2(const MatrixType& matrix, MatrixType* result)
{
typedef typename MatrixType::Scalar Scalar;
const Scalar invdet = Scalar(1) / matrix.determinant();
ei_compute_inverse_size2_helper( matrix, invdet, result );
}
template<typename XprType, typename MatrixType>
bool ei_compute_inverse_size2_with_check(const XprType& matrix, MatrixType* result)
{
typedef typename MatrixType::Scalar Scalar;
const Scalar det = matrix.determinant();
if(ei_isMuchSmallerThan(det, matrix.cwise().abs().maxCoeff())) return false;
const Scalar invdet = Scalar(1) / det;
ei_compute_inverse_size2_helper( matrix, invdet, result );
return true;
}
template<typename XprType, typename MatrixType>
void ei_compute_inverse_size3_helper(
const XprType& matrix,
const typename MatrixType::Scalar& invdet,
const typename MatrixType::Scalar& det_minor00,
const typename MatrixType::Scalar& det_minor10,
const typename MatrixType::Scalar& det_minor20,
MatrixType* result)
{
result->coeffRef(0, 0) = det_minor00 * invdet;
result->coeffRef(0, 1) = -det_minor10 * invdet;
result->coeffRef(0, 2) = det_minor20 * invdet;
result->coeffRef(1, 0) = -matrix.minor(0,1).determinant() * invdet;
result->coeffRef(1, 1) = matrix.minor(1,1).determinant() * invdet;
result->coeffRef(1, 2) = -matrix.minor(2,1).determinant() * invdet;
result->coeffRef(2, 0) = matrix.minor(0,2).determinant() * invdet;
result->coeffRef(2, 1) = -matrix.minor(1,2).determinant() * invdet;
result->coeffRef(2, 2) = matrix.minor(2,2).determinant() * invdet;
}
template<bool Check, typename XprType, typename MatrixType>
bool ei_compute_inverse_size3(const XprType& matrix, MatrixType* result)
{
typedef typename MatrixType::Scalar Scalar;
const Scalar det_minor00 = matrix.minor(0,0).determinant();
const Scalar det_minor10 = matrix.minor(1,0).determinant();
const Scalar det_minor20 = matrix.minor(2,0).determinant();
const Scalar det = ( det_minor00 * matrix.coeff(0,0)
- det_minor10 * matrix.coeff(1,0)
+ det_minor20 * matrix.coeff(2,0) );
if(Check) if(ei_isMuchSmallerThan(det, matrix.cwise().abs().maxCoeff())) return false;
const Scalar invdet = Scalar(1) / det;
ei_compute_inverse_size3_helper( matrix, invdet, det_minor00, det_minor10, det_minor20, result );
return true;
result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
}
template<typename MatrixType, typename ResultType>
bool ei_compute_inverse_size4_helper(const MatrixType& matrix, ResultType* result)
inline void ei_compute_inverse_size2(const MatrixType& matrix, ResultType& result)
{
typedef typename ResultType::Scalar Scalar;
const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
ei_compute_inverse_size2_helper(matrix, invdet, result);
}
template<typename MatrixType, typename ResultType>
inline void ei_compute_inverse_and_det_size2_with_check(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
typedef typename ResultType::Scalar Scalar;
determinant = matrix.determinant();
invertible = ei_abs(determinant) > absDeterminantThreshold;
if(!invertible) return;
const Scalar invdet = Scalar(1) / determinant;
ei_compute_inverse_size2_helper(matrix, invdet, inverse);
}
template<typename MatrixType, typename ResultType>
void ei_compute_inverse_size3_helper(
const MatrixType& matrix,
const typename ResultType::Scalar& invdet,
const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
ResultType& result)
{
result.row(0) = cofactors_col0 * invdet;
result.coeffRef(1,0) = -matrix.minor(0,1).determinant() * invdet;
result.coeffRef(1,1) = matrix.minor(1,1).determinant() * invdet;
result.coeffRef(1,2) = -matrix.minor(2,1).determinant() * invdet;
result.coeffRef(2,0) = matrix.minor(0,2).determinant() * invdet;
result.coeffRef(2,1) = -matrix.minor(1,2).determinant() * invdet;
result.coeffRef(2,2) = matrix.minor(2,2).determinant() * invdet;
}
template<typename MatrixType, typename ResultType>
void ei_compute_inverse_size3(
const MatrixType& matrix,
ResultType& result)
{
typedef typename ResultType::Scalar Scalar;
Matrix<Scalar,3,1> cofactors_col0;
cofactors_col0.coeffRef(0) = matrix.minor(0,0).determinant();
cofactors_col0.coeffRef(1) = -matrix.minor(1,0).determinant();
cofactors_col0.coeffRef(2) = matrix.minor(2,0).determinant();
const Scalar det = (cofactors_col0.cwise()*matrix.col(0)).sum();
const Scalar invdet = Scalar(1) / det;
ei_compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
}
template<typename MatrixType, typename ResultType>
void ei_compute_inverse_and_det_size3_with_check(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
typedef typename ResultType::Scalar Scalar;
Matrix<Scalar,3,1> cofactors_col0;
cofactors_col0.coeffRef(0) = matrix.minor(0,0).determinant();
cofactors_col0.coeffRef(1) = -matrix.minor(1,0).determinant();
cofactors_col0.coeffRef(2) = matrix.minor(2,0).determinant();
determinant = (cofactors_col0.cwise()*matrix.col(0)).sum();
invertible = ei_abs(determinant) > absDeterminantThreshold;
if(!invertible) return;
const Scalar invdet = Scalar(1) / determinant;
ei_compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
}
template<typename MatrixType, typename ResultType>
void ei_compute_inverse_size4_helper(const MatrixType& matrix, ResultType& result)
{
/* Let's split M into four 2x2 blocks:
* (P Q)
@ -111,113 +133,106 @@ bool ei_compute_inverse_size4_helper(const MatrixType& matrix, ResultType* resul
* Q' = -(P_inverse*Q) * S'
* R' = -S' * (R*P_inverse)
*/
typedef Block<MatrixType,2,2> XprBlock22;
typedef Block<ResultType,2,2> XprBlock22;
typedef typename MatrixBase<XprBlock22>::PlainMatrixType Block22;
Block22 P_inverse;
if(ei_compute_inverse_size2_with_check(matrix.template block<2,2>(0,0), &P_inverse))
{
const Block22 Q = matrix.template block<2,2>(0,2);
const Block22 P_inverse_times_Q = P_inverse * Q;
const XprBlock22 R = matrix.template block<2,2>(2,0);
const Block22 R_times_P_inverse = R * P_inverse;
const Block22 R_times_P_inverse_times_Q = R_times_P_inverse * Q;
const XprBlock22 S = matrix.template block<2,2>(2,2);
const Block22 X = S - R_times_P_inverse_times_Q;
Block22 Y;
ei_compute_inverse_size2(X, &Y);
result->template block<2,2>(2,2) = Y;
result->template block<2,2>(2,0) = - Y * R_times_P_inverse;
const Block22 Z = P_inverse_times_Q * Y;
result->template block<2,2>(0,2) = - Z;
result->template block<2,2>(0,0) = P_inverse + Z * R_times_P_inverse;
return true;
}
else
{
return false;
}
ei_compute_inverse_size2(matrix.template block<2,2>(0,0), P_inverse);
const Block22 Q = matrix.template block<2,2>(0,2);
const Block22 P_inverse_times_Q = P_inverse * Q;
const XprBlock22 R = matrix.template block<2,2>(2,0);
const Block22 R_times_P_inverse = R * P_inverse;
const Block22 R_times_P_inverse_times_Q = R_times_P_inverse * Q;
const XprBlock22 S = matrix.template block<2,2>(2,2);
const Block22 X = S - R_times_P_inverse_times_Q;
Block22 Y;
ei_compute_inverse_size2(X, Y);
result.template block<2,2>(2,2) = Y;
result.template block<2,2>(2,0) = - Y * R_times_P_inverse;
const Block22 Z = P_inverse_times_Q * Y;
result.template block<2,2>(0,2) = - Z;
result.template block<2,2>(0,0) = P_inverse + Z * R_times_P_inverse;
}
template<typename XprType, typename MatrixType>
bool ei_compute_inverse_size4_with_check(const XprType& matrix, MatrixType* result)
template<typename MatrixType, typename ResultType>
void ei_compute_inverse_size4(const MatrixType& _matrix, ResultType& result)
{
if(ei_compute_inverse_size4_helper(matrix, result))
{
// good ! The topleft 2x2 block was invertible, so the 2x2 blocks approach is successful.
return true;
}
else
{
// rare case: the topleft 2x2 block is not invertible (but the matrix itself is assumed to be).
// since this is a rare case, we don't need to optimize it. We just want to handle it with little
// additional code.
MatrixType m(matrix);
m.row(0).swap(m.row(2));
m.row(1).swap(m.row(3));
if(ei_compute_inverse_size4_helper(m, result))
typedef typename ResultType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
// we will do row permutations on the matrix. This copy should have negligible cost.
// if not, consider working in-place on the matrix (const-cast it, but then undo the permutations
// to nevertheless honor constness)
typename MatrixType::PlainMatrixType matrix(_matrix);
// let's extract from the 2 first colums a 2x2 block whose determinant is as big as possible.
int good_row0=0, good_row1=1;
RealScalar good_absdet(-1);
// this double for loop shouldn't be too costly: only 6 iterations
for(int row0=0; row0<4; ++row0) {
for(int row1=row0+1; row1<4; ++row1)
{
// good, the topleft 2x2 block of m is invertible. Since m is different from matrix in that some
// rows were permuted, the actual inverse of matrix is derived from the inverse of m by permuting
// the corresponding columns.
result->col(0).swap(result->col(2));
result->col(1).swap(result->col(3));
return true;
}
else
{
// first, undo the swaps previously made
m.row(0).swap(m.row(2));
m.row(1).swap(m.row(3));
// swap row 0 with the the row among 0 and 1 that has the biggest 2 first coeffs
int swap0with = ei_abs(m.coeff(0,0))+ei_abs(m.coeff(0,1))>ei_abs(m.coeff(1,0))+ei_abs(m.coeff(1,1)) ? 0 : 1;
m.row(0).swap(m.row(swap0with));
// swap row 1 with the the row among 2 and 3 that has the biggest 2 first coeffs
int swap1with = ei_abs(m.coeff(2,0))+ei_abs(m.coeff(2,1))>ei_abs(m.coeff(3,0))+ei_abs(m.coeff(3,1)) ? 2 : 3;
m.row(1).swap(m.row(swap1with));
if( ei_compute_inverse_size4_helper(m, result) )
RealScalar absdet = ei_abs(matrix.coeff(row0,0)*matrix.coeff(row1,1)
- matrix.coeff(row0,1)*matrix.coeff(row1,0));
if(absdet > good_absdet)
{
result->col(1).swap(result->col(swap1with));
result->col(0).swap(result->col(swap0with));
return true;
}
else
{
// non-invertible matrix
return false;
good_absdet = absdet;
good_row0 = row0;
good_row1 = row1;
}
}
}
// do row permutations to move this 2x2 block to the top
matrix.row(0).swap(matrix.row(good_row0));
matrix.row(1).swap(matrix.row(good_row1));
// now applying our helper function is numerically stable
ei_compute_inverse_size4_helper(matrix, result);
// Since we did row permutations on the original matrix, we need to do column permutations
// in the reverse order on the inverse
result.col(1).swap(result.col(good_row1));
result.col(0).swap(result.col(good_row0));
}
template<typename MatrixType, typename ResultType>
void ei_compute_inverse_and_det_size4_with_check(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& result,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
determinant = matrix.determinant();
invertible = ei_abs(determinant) > absDeterminantThreshold;
if(invertible) ei_compute_inverse_size4(matrix, result);
}
/***********************************************
*** Part 2 : selector and MatrixBase methods ***
*** Part 2 : selectors and MatrixBase methods ***
***********************************************/
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct ei_compute_inverse
{
static inline void run(const MatrixType& matrix, ResultType* result)
static inline void run(const MatrixType& matrix, ResultType& result)
{
*result = matrix.partialLu().inverse();
result = matrix.partialLu().inverse();
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse<MatrixType, ResultType, 1>
{
static inline void run(const MatrixType& matrix, ResultType* result)
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename MatrixType::Scalar Scalar;
result->coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse<MatrixType, ResultType, 2>
{
static inline void run(const MatrixType& matrix, ResultType* result)
static inline void run(const MatrixType& matrix, ResultType& result)
{
ei_compute_inverse_size2(matrix, result);
}
@ -226,64 +241,53 @@ struct ei_compute_inverse<MatrixType, ResultType, 2>
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse<MatrixType, ResultType, 3>
{
static inline void run(const MatrixType& matrix, ResultType* result)
static inline void run(const MatrixType& matrix, ResultType& result)
{
ei_compute_inverse_size3<false, MatrixType, ResultType>(matrix, result);
ei_compute_inverse_size3(matrix, result);
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse<MatrixType, ResultType, 4>
{
static inline void run(const MatrixType& matrix, ResultType* result)
static inline void run(const MatrixType& matrix, ResultType& result)
{
ei_compute_inverse_size4_with_check(matrix, result);
ei_compute_inverse_size4(matrix, result);
}
};
/** \lu_module
*
* Computes the matrix inverse of this matrix.
*
* \note This matrix must be invertible, otherwise the result is undefined. If you need an invertibility check, use
* computeInverseWithCheck().
*
* \param result Pointer to the matrix in which to store the result.
*
* Example: \include MatrixBase_computeInverse.cpp
* Output: \verbinclude MatrixBase_computeInverse.out
*
* \sa inverse(), computeInverseWithCheck()
*/
template<typename Derived>
template<typename ResultType>
inline void MatrixBase<Derived>::computeInverse(ResultType *result) const
{
ei_assert(rows() == cols());
EIGEN_STATIC_ASSERT(NumTraits<Scalar>::HasFloatingPoint,NUMERIC_TYPE_MUST_BE_FLOATING_POINT)
ei_compute_inverse<PlainMatrixType, ResultType>::run(eval(), result);
}
/** \lu_module
*
* \returns the matrix inverse of this matrix.
*
* \note This matrix must be invertible, otherwise the result is undefined. If you need an invertibility check, use
* computeInverseWithCheck().
* For small fixed sizes up to 4x4, this method uses ad-hoc methods (cofactors up to 3x3, Euler's trick for 4x4).
* In the general case, this method uses class PartialLU.
*
* \note This method returns a matrix by value, which can be inefficient. To avoid that overhead,
* use computeInverse() instead.
* \note This matrix must be invertible, otherwise the result is undefined. If you need an
* invertibility check, do the following:
* \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck().
* \li for the general case, use class LU.
*
* Example: \include MatrixBase_inverse.cpp
* Output: \verbinclude MatrixBase_inverse.out
*
* \sa computeInverse(), computeInverseWithCheck()
* \sa computeInverseAndDetWithCheck()
*/
template<typename Derived>
inline const typename MatrixBase<Derived>::PlainMatrixType MatrixBase<Derived>::inverse() const
{
typename MatrixBase<Derived>::PlainMatrixType result;
computeInverse(&result);
EIGEN_STATIC_ASSERT(NumTraits<Scalar>::HasFloatingPoint,NUMERIC_TYPE_MUST_BE_FLOATING_POINT)
ei_assert(rows() == cols());
typedef typename MatrixBase<Derived>::PlainMatrixType ResultType;
ResultType result(rows(), cols());
// for 2x2, it's worth giving a chance to avoid evaluating.
// for larger sizes, evaluating has negligible cost and limits code size.
typedef typename ei_meta_if<
RowsAtCompileTime == 2,
typename ei_cleantype<typename ei_nested<Derived,2>::type>::type,
PlainMatrixType
>::ret MatrixType;
ei_compute_inverse<MatrixType, ResultType>::run(derived(), result);
return result;
}
@ -293,74 +297,108 @@ inline const typename MatrixBase<Derived>::PlainMatrixType MatrixBase<Derived>::
*******************************************/
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct ei_compute_inverse_with_check
struct ei_compute_inverse_and_det_with_check {};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
{
static inline bool run(const MatrixType& matrix, ResultType* result)
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& result,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
typedef typename MatrixType::Scalar Scalar;
LU<MatrixType> lu( matrix );
if( !lu.isInvertible() ) return false;
*result = lu.inverse();
return true;
determinant = matrix.coeff(0,0);
invertible = ei_abs(determinant) > absDeterminantThreshold;
if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse_with_check<MatrixType, ResultType, 1>
struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
{
static inline bool run(const MatrixType& matrix, ResultType* result)
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& result,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
typedef typename MatrixType::Scalar Scalar;
if( matrix.coeff(0,0) == Scalar(0) ) return false;
result->coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
return true;
ei_compute_inverse_and_det_size2_with_check
(matrix, absDeterminantThreshold, result, determinant, invertible);
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse_with_check<MatrixType, ResultType, 2>
struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
{
static inline bool run(const MatrixType& matrix, ResultType* result)
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& result,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
return ei_compute_inverse_size2_with_check(matrix, result);
ei_compute_inverse_and_det_size3_with_check
(matrix, absDeterminantThreshold, result, determinant, invertible);
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse_with_check<MatrixType, ResultType, 3>
struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
{
static inline bool run(const MatrixType& matrix, ResultType* result)
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& result,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
return ei_compute_inverse_size3<true, MatrixType, ResultType>(matrix, result);
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse_with_check<MatrixType, ResultType, 4>
{
static inline bool run(const MatrixType& matrix, ResultType* result)
{
return ei_compute_inverse_size4_with_check(matrix, result);
ei_compute_inverse_and_det_size4_with_check
(matrix, absDeterminantThreshold, result, determinant, invertible);
}
};
/** \lu_module
*
* Computation of matrix inverse, with invertibility check.
* Computation of matrix inverse and determinant, with invertibility check.
*
* \returns true if the matrix is invertible, false otherwise.
* This is only for fixed-size square matrices of size up to 4x4.
*
* \param result Pointer to the matrix in which to store the result.
* \param inverse Reference to the matrix in which to store the inverse.
* \param determinant Reference to the variable in which to store the inverse.
* \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
* \param absDeterminantThreshold Optional parameter controlling the invertibility check.
* The matrix will be declared invertible if the absolute value of its
* determinant is greater than this threshold.
*
* \sa inverse(), computeInverse()
* \sa inverse()
*/
template<typename Derived>
template<typename ResultType>
inline bool MatrixBase<Derived>::computeInverseWithCheck(ResultType *result) const
inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible,
const RealScalar& absDeterminantThreshold
) const
{
// i'd love to put some static assertions there, but SFINAE means that they have no effect...
ei_assert(rows() == cols());
EIGEN_STATIC_ASSERT(NumTraits<Scalar>::HasFloatingPoint,NUMERIC_TYPE_MUST_BE_FLOATING_POINT)
return ei_compute_inverse_with_check<PlainMatrixType, ResultType>::run(eval(), result);
// for 2x2, it's worth giving a chance to avoid evaluating.
// for larger sizes, evaluating has negligible cost and limits code size.
typedef typename ei_meta_if<
RowsAtCompileTime == 2,
typename ei_cleantype<typename ei_nested<Derived, 2>::type>::type,
PlainMatrixType
>::ret MatrixType;
ei_compute_inverse_and_det_with_check<MatrixType, ResultType>::run
(derived(), absDeterminantThreshold, inverse, determinant, invertible);
}

View File

@ -53,9 +53,6 @@ template<typename MatrixType> void inverse(const MatrixType& m)
m2 = m1.inverse();
VERIFY_IS_APPROX(m1, m2.inverse() );
m1.computeInverse(&m2);
VERIFY_IS_APPROX(m1, m2.inverse() );
VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5));
VERIFY_IS_APPROX(identity, m1.inverse() * m1 );
@ -66,17 +63,23 @@ template<typename MatrixType> void inverse(const MatrixType& m)
// since for the general case we implement separately row-major and col-major, test that
VERIFY_IS_APPROX(m1.transpose().inverse(), m1.inverse().transpose());
//computeInverseWithCheck tests
#if !defined(EIGEN_TEST_PART_5) && !defined(EIGEN_TEST_PART_6)
//computeInverseAndDetWithCheck tests
//First: an invertible matrix
bool invertible = m1.computeInverseWithCheck(&m2);
bool invertible;
RealScalar det;
m1.computeInverseAndDetWithCheck(m2, det, invertible);
VERIFY(invertible);
VERIFY_IS_APPROX(identity, m1*m2);
VERIFY_IS_APPROX(det, m1.determinant());
//Second: a rank one matrix (not invertible, except for 1x1 matrices)
VectorType v3 = VectorType::Random(rows);
MatrixType m3 = v3*v3.transpose(), m4(rows,cols);
invertible = m3.computeInverseWithCheck( &m4 );
m3.computeInverseAndDetWithCheck(m4, det, invertible);
VERIFY( rows==1 ? invertible : !invertible );
VERIFY_IS_APPROX(det, m3.determinant());
#endif
}
void test_inverse()