mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
SPQR: fix default threshold value
This commit is contained in:
parent
5ef95fabee
commit
ebdf6a2dbb
@ -68,13 +68,13 @@ class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
|
||||
typedef Map<PermutationMatrix<Dynamic, Dynamic, Index> > PermutationType;
|
||||
public:
|
||||
SPQR()
|
||||
: m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon())
|
||||
: m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
|
||||
{
|
||||
cholmod_l_start(&m_cc);
|
||||
}
|
||||
|
||||
explicit SPQR(const _MatrixType& matrix)
|
||||
: m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon())
|
||||
: m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
|
||||
{
|
||||
cholmod_l_start(&m_cc);
|
||||
compute(matrix);
|
||||
@ -99,10 +99,25 @@ class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
|
||||
if(m_isInitialized) SPQR_free();
|
||||
|
||||
MatrixType mat(matrix);
|
||||
|
||||
/* Compute the default threshold as in MatLab, see:
|
||||
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
|
||||
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
|
||||
*/
|
||||
RealScalar pivotThreshold = m_tolerance;
|
||||
if(m_useDefaultThreshold)
|
||||
{
|
||||
RealScalar max2Norm = 0.0;
|
||||
for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm());
|
||||
if(max2Norm==RealScalar(0))
|
||||
max2Norm = RealScalar(1);
|
||||
pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
|
||||
}
|
||||
|
||||
cholmod_sparse A;
|
||||
A = viewAsCholmod(mat);
|
||||
Index col = matrix.cols();
|
||||
m_rank = SuiteSparseQR<Scalar>(m_ordering, m_tolerance, col, &A,
|
||||
m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A,
|
||||
&m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
|
||||
|
||||
if (!m_cR)
|
||||
@ -118,7 +133,7 @@ class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
|
||||
/**
|
||||
* Get the number of rows of the input matrix and the Q matrix
|
||||
*/
|
||||
inline Index rows() const {return m_H->nrow; }
|
||||
inline Index rows() const {return m_cR->nrow; }
|
||||
|
||||
/**
|
||||
* Get the number of columns of the input matrix.
|
||||
@ -130,16 +145,25 @@ class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
|
||||
{
|
||||
eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
|
||||
eigen_assert(b.cols()==1 && "This method is for vectors only");
|
||||
|
||||
|
||||
//Compute Q^T * b
|
||||
typename Dest::PlainObject y;
|
||||
typename Dest::PlainObject y, y2;
|
||||
y = matrixQ().transpose() * b;
|
||||
// Solves with the triangular matrix R
|
||||
|
||||
// Solves with the triangular matrix R
|
||||
Index rk = this->rank();
|
||||
y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y.topRows(rk));
|
||||
y.bottomRows(cols()-rk).setZero();
|
||||
y2 = y;
|
||||
y.resize((std::max)(cols(),Index(y.rows())),y.cols());
|
||||
y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));
|
||||
|
||||
// Apply the column permutation
|
||||
dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
|
||||
// colsPermutation() performs a copy of the permutation,
|
||||
// so let's apply it manually:
|
||||
for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
|
||||
for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
|
||||
|
||||
// y.bottomRows(y.rows()-rk).setZero();
|
||||
// dest = colsPermutation() * y.topRows(cols());
|
||||
|
||||
m_info = Success;
|
||||
}
|
||||
@ -178,7 +202,11 @@ class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
|
||||
/// Set the fill-reducing ordering method to be used
|
||||
void setSPQROrdering(int ord) { m_ordering = ord;}
|
||||
/// Set the tolerance tol to treat columns with 2-norm < =tol as zero
|
||||
void setPivotThreshold(const RealScalar& tol) { m_tolerance = tol; }
|
||||
void setPivotThreshold(const RealScalar& tol)
|
||||
{
|
||||
m_useDefaultThreshold = false;
|
||||
m_tolerance = tol;
|
||||
}
|
||||
|
||||
/** \returns a pointer to the SPQR workspace */
|
||||
cholmod_common *cholmodCommon() const { return &m_cc; }
|
||||
@ -210,6 +238,7 @@ class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
|
||||
mutable cholmod_dense *m_HTau; // The Householder coefficients
|
||||
mutable Index m_rank; // The rank of the matrix
|
||||
mutable cholmod_common m_cc; // Workspace and parameters
|
||||
bool m_useDefaultThreshold; // Use default threshold
|
||||
template<typename ,typename > friend struct SPQR_QProduct;
|
||||
};
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user