mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Merged in rmlarsen/eigen (pull request PR-178)
Eigen Tensor cost model part 2: Thread scheduling for standard evaluators and reductions.
This commit is contained in:
commit
eb669f989f
@ -10,9 +10,9 @@
|
||||
#ifndef EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
|
||||
#define EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
|
||||
|
||||
#if !defined(EIGEN_USE_GPU)
|
||||
#define EIGEN_USE_COST_MODEL
|
||||
#endif
|
||||
//#if !defined(EIGEN_USE_GPU)
|
||||
//#define EIGEN_USE_COST_MODEL
|
||||
//#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
|
@ -189,6 +189,11 @@ struct TensorEvaluator<const Derived, Device>
|
||||
return loadConstant(m_data+index);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
|
||||
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
|
||||
internal::unpacket_traits<PacketReturnType>::size);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC const Scalar* data() const { return m_data; }
|
||||
|
||||
protected:
|
||||
|
@ -59,9 +59,16 @@ class TensorExecutor<Expression, DefaultDevice, true>
|
||||
{
|
||||
const Index size = array_prod(evaluator.dimensions());
|
||||
const int PacketSize = unpacket_traits<typename TensorEvaluator<Expression, DefaultDevice>::PacketReturnType>::size;
|
||||
// Manually unroll this loop since compilers don't do it.
|
||||
const Index UnrolledSize = (size / (4 * PacketSize)) * 4 * PacketSize;
|
||||
for (Index i = 0; i < UnrolledSize; i += 4*PacketSize) {
|
||||
evaluator.evalPacket(i);
|
||||
evaluator.evalPacket(i+PacketSize);
|
||||
evaluator.evalPacket(i+2*PacketSize);
|
||||
evaluator.evalPacket(i+3*PacketSize);
|
||||
}
|
||||
const Index VectorizedSize = (size / PacketSize) * PacketSize;
|
||||
|
||||
for (Index i = 0; i < VectorizedSize; i += PacketSize) {
|
||||
for (Index i = UnrolledSize; i < VectorizedSize; i += PacketSize) {
|
||||
evaluator.evalPacket(i);
|
||||
}
|
||||
for (Index i = VectorizedSize; i < size; ++i) {
|
||||
@ -78,8 +85,9 @@ class TensorExecutor<Expression, DefaultDevice, true>
|
||||
#ifdef EIGEN_USE_THREADS
|
||||
template <typename Evaluator, typename Index, bool Vectorizable>
|
||||
struct EvalRange {
|
||||
static void run(Evaluator evaluator, const Index first, const Index last) {
|
||||
eigen_assert(last > first);
|
||||
static void run(Evaluator* evaluator_in, const Index first, const Index last) {
|
||||
Evaluator evaluator = *evaluator_in;
|
||||
eigen_assert(last >= first);
|
||||
for (Index i = first; i < last; ++i) {
|
||||
evaluator.evalScalar(i);
|
||||
}
|
||||
@ -88,19 +96,26 @@ struct EvalRange {
|
||||
|
||||
template <typename Evaluator, typename Index>
|
||||
struct EvalRange<Evaluator, Index, true> {
|
||||
static void run(Evaluator evaluator, const Index first, const Index last) {
|
||||
eigen_assert(last > first);
|
||||
|
||||
static void run(Evaluator* evaluator_in, const Index first, const Index last) {
|
||||
Evaluator evaluator = *evaluator_in;
|
||||
eigen_assert(last >= first);
|
||||
Index i = first;
|
||||
static const int PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
|
||||
const int PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
|
||||
if (last - first >= PacketSize) {
|
||||
eigen_assert(first % PacketSize == 0);
|
||||
Index lastPacket = last - (last % PacketSize);
|
||||
for (; i < lastPacket; i += PacketSize) {
|
||||
Index last_chunk_offset = last - 4 * PacketSize;
|
||||
// Manually unroll this loop since compilers don't do it.
|
||||
for (; i <= last_chunk_offset; i += 4*PacketSize) {
|
||||
evaluator.evalPacket(i);
|
||||
evaluator.evalPacket(i+PacketSize);
|
||||
evaluator.evalPacket(i+2*PacketSize);
|
||||
evaluator.evalPacket(i+3*PacketSize);
|
||||
}
|
||||
last_chunk_offset = last - PacketSize;
|
||||
for (; i <= last_chunk_offset; i += PacketSize) {
|
||||
evaluator.evalPacket(i);
|
||||
}
|
||||
}
|
||||
|
||||
for (; i < last; ++i) {
|
||||
evaluator.evalScalar(i);
|
||||
}
|
||||
@ -108,8 +123,7 @@ struct EvalRange<Evaluator, Index, true> {
|
||||
};
|
||||
|
||||
template <typename Expression, bool Vectorizable>
|
||||
class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable>
|
||||
{
|
||||
class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable> {
|
||||
public:
|
||||
typedef typename Expression::Index Index;
|
||||
static inline void run(const Expression& expr, const ThreadPoolDevice& device)
|
||||
@ -119,25 +133,35 @@ class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable>
|
||||
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
||||
if (needs_assign)
|
||||
{
|
||||
const Index PacketSize = Vectorizable ? unpacket_traits<typename Evaluator::PacketReturnType>::size : 1;
|
||||
const Index size = array_prod(evaluator.dimensions());
|
||||
|
||||
static const int PacketSize = Vectorizable ? unpacket_traits<typename Evaluator::PacketReturnType>::size : 1;
|
||||
|
||||
int blocksz = std::ceil<int>(static_cast<float>(size)/device.numThreads()) + PacketSize - 1;
|
||||
int num_threads = device.numThreads();
|
||||
#ifdef EIGEN_USE_COST_MODEL
|
||||
if (num_threads > 1) {
|
||||
num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
|
||||
size, evaluator.costPerCoeff(Vectorizable), num_threads);
|
||||
}
|
||||
#endif
|
||||
if (num_threads == 1) {
|
||||
EvalRange<Evaluator, Index, Vectorizable>::run(&evaluator, 0, size);
|
||||
} else {
|
||||
Index blocksz = std::ceil<Index>(static_cast<float>(size)/num_threads) + PacketSize - 1;
|
||||
const Index blocksize = numext::maxi<Index>(PacketSize, (blocksz - (blocksz % PacketSize)));
|
||||
const unsigned int numblocks = static_cast<unsigned int>(size / blocksize);
|
||||
const Index numblocks = size / blocksize;
|
||||
|
||||
Barrier barrier(numblocks);
|
||||
for (unsigned int i = 0; i < numblocks; ++i) {
|
||||
device.enqueue_with_barrier(&barrier, &EvalRange<Evaluator, Index, Vectorizable>::run, evaluator, i*blocksize, (i+1)*blocksize);
|
||||
for (int i = 0; i < numblocks; ++i) {
|
||||
device.enqueue_with_barrier(
|
||||
&barrier, &EvalRange<Evaluator, Index, Vectorizable>::run,
|
||||
&evaluator, i * blocksize, (i + 1) * blocksize);
|
||||
}
|
||||
|
||||
if (static_cast<Index>(numblocks) * blocksize < size) {
|
||||
EvalRange<Evaluator, Index, Vectorizable>::run(evaluator, numblocks * blocksize, size);
|
||||
if (numblocks * blocksize < size) {
|
||||
EvalRange<Evaluator, Index, Vectorizable>::run(
|
||||
&evaluator, numblocks * blocksize, size);
|
||||
}
|
||||
|
||||
barrier.Wait();
|
||||
}
|
||||
}
|
||||
evaluator.cleanup();
|
||||
}
|
||||
};
|
||||
@ -226,7 +250,6 @@ inline void TensorExecutor<Expression, GpuDevice, Vectorizable>::run(
|
||||
#endif // __CUDACC__
|
||||
#endif // EIGEN_USE_GPU
|
||||
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
@ -214,7 +214,7 @@ struct FullReducer {
|
||||
|
||||
static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const Device&, typename Self::CoeffReturnType* output) {
|
||||
const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions());
|
||||
*output = InnerMostDimReducer<Self, Op>::reduce(self, 0, num_coeffs, reducer);
|
||||
*output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
|
||||
}
|
||||
};
|
||||
|
||||
@ -222,18 +222,19 @@ struct FullReducer {
|
||||
#ifdef EIGEN_USE_THREADS
|
||||
// Multithreaded full reducers
|
||||
template <typename Self, typename Op,
|
||||
bool vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
|
||||
bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
|
||||
struct FullReducerShard {
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Self& self, typename Self::Index firstIndex,
|
||||
typename Self::Index numValuesToReduce, Op& reducer,
|
||||
typename Self::CoeffReturnType* output) {
|
||||
*output = InnerMostDimReducer<Self, Op, vectorizable>::reduce(
|
||||
*output = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
|
||||
self, firstIndex, numValuesToReduce, reducer);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Self, typename Op>
|
||||
struct FullReducer<Self, Op, ThreadPoolDevice, false> {
|
||||
// Multithreaded full reducer
|
||||
template <typename Self, typename Op, bool Vectorizable>
|
||||
struct FullReducer<Self, Op, ThreadPoolDevice, Vectorizable> {
|
||||
static const bool HasOptimizedImplementation = !Op::IsStateful;
|
||||
static const int PacketSize =
|
||||
unpacket_traits<typename Self::PacketReturnType>::size;
|
||||
@ -247,79 +248,44 @@ struct FullReducer<Self, Op, ThreadPoolDevice, false> {
|
||||
*output = reducer.finalize(reducer.initialize());
|
||||
return;
|
||||
}
|
||||
const std::size_t num_threads = device.numThreads();
|
||||
#ifdef EIGEN_USE_COST_MODEL
|
||||
const TensorOpCost cost =
|
||||
self.m_impl.costPerCoeff(Vectorizable) +
|
||||
TensorOpCost(0, 0, internal::functor_traits<Op>::Cost, Vectorizable,
|
||||
PacketSize);
|
||||
const int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
|
||||
num_coeffs, cost, device.numThreads());
|
||||
#else
|
||||
const int num_threads = device.numThreads();
|
||||
#endif
|
||||
if (num_threads == 1) {
|
||||
*output = InnerMostDimReducer<Self, Op, false>::reduce(self, 0, num_coeffs, reducer);
|
||||
*output =
|
||||
InnerMostDimReducer<Self, Op, Vectorizable>::reduce(self, 0, num_coeffs, reducer);
|
||||
return;
|
||||
} else {
|
||||
const Index blocksize = std::floor<Index>(static_cast<float>(num_coeffs) / num_threads);
|
||||
const unsigned int numblocks = blocksize > 0 ? static_cast<unsigned int>(num_coeffs / blocksize) : 0;
|
||||
eigen_assert(num_coeffs >= static_cast<Index>(numblocks) * blocksize);
|
||||
}
|
||||
const Index blocksize =
|
||||
std::floor<Index>(static_cast<float>(num_coeffs) / num_threads);
|
||||
const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0;
|
||||
eigen_assert(num_coeffs >= numblocks * blocksize);
|
||||
|
||||
Barrier barrier(numblocks);
|
||||
MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize());
|
||||
for (unsigned int i = 0; i < numblocks; ++i) {
|
||||
device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, false>::run, self,
|
||||
i * blocksize, blocksize, reducer, &shards[i]);
|
||||
}
|
||||
|
||||
typename Self::CoeffReturnType finalShard;
|
||||
if (static_cast<Index>(numblocks) * blocksize < num_coeffs) {
|
||||
finalShard = InnerMostDimReducer<Self, Op, false>::reduce(
|
||||
self, numblocks * blocksize, num_coeffs - numblocks * blocksize, reducer);
|
||||
} else {
|
||||
finalShard = reducer.initialize();
|
||||
}
|
||||
barrier.Wait();
|
||||
for (unsigned int i = 0; i < numblocks; ++i) {
|
||||
reducer.reduce(shards[i], &finalShard);
|
||||
}
|
||||
*output = reducer.finalize(finalShard);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Self, typename Op>
|
||||
struct FullReducer<Self, Op, ThreadPoolDevice, true> {
|
||||
static const bool HasOptimizedImplementation = !Op::IsStateful;
|
||||
static const int PacketSize =
|
||||
unpacket_traits<typename Self::PacketReturnType>::size;
|
||||
|
||||
// launch one reducer per thread and accumulate the result.
|
||||
static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device,
|
||||
typename Self::CoeffReturnType* output) {
|
||||
typedef typename Self::Index Index;
|
||||
const Index num_coeffs = array_prod(self.m_impl.dimensions());
|
||||
if (num_coeffs == 0) {
|
||||
*output = reducer.finalize(reducer.initialize());
|
||||
return;
|
||||
}
|
||||
const std::size_t num_threads = device.numThreads();
|
||||
if (num_threads == 1) {
|
||||
*output = InnerMostDimReducer<Self, Op, true>::reduce(self, 0, num_coeffs, reducer);
|
||||
return;
|
||||
}
|
||||
const Index blocksize = std::floor<Index>(static_cast<float>(num_coeffs) / num_threads);
|
||||
const unsigned int numblocks = blocksize > 0 ? static_cast<unsigned int>(num_coeffs / blocksize) : 0;
|
||||
eigen_assert(num_coeffs >= static_cast<Index>(numblocks) * blocksize);
|
||||
|
||||
Barrier barrier(numblocks);
|
||||
MaxSizeVector<typename Self::CoeffReturnType> shards(numblocks, reducer.initialize());
|
||||
for (unsigned int i = 0; i < numblocks; ++i) {
|
||||
device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, true>::run,
|
||||
for (Index i = 0; i < numblocks; ++i) {
|
||||
device.enqueue_with_barrier(&barrier, &FullReducerShard<Self, Op, Vectorizable>::run,
|
||||
self, i * blocksize, blocksize, reducer,
|
||||
&shards[i]);
|
||||
}
|
||||
typename Self::CoeffReturnType finalShard;
|
||||
if (static_cast<Index>(numblocks) * blocksize < num_coeffs) {
|
||||
finalShard = InnerMostDimReducer<Self, Op, true>::reduce(
|
||||
self, numblocks * blocksize, num_coeffs - numblocks * blocksize, reducer);
|
||||
if (numblocks * blocksize < num_coeffs) {
|
||||
finalShard = InnerMostDimReducer<Self, Op, Vectorizable>::reduce(
|
||||
self, numblocks * blocksize, num_coeffs - numblocks * blocksize,
|
||||
reducer);
|
||||
} else {
|
||||
finalShard = reducer.initialize();
|
||||
}
|
||||
|
||||
barrier.Wait();
|
||||
for (unsigned int i = 0; i < numblocks; ++i) {
|
||||
|
||||
for (Index i = 0; i < numblocks; ++i) {
|
||||
reducer.reduce(shards[i], &finalShard);
|
||||
}
|
||||
*output = reducer.finalize(finalShard);
|
||||
@ -498,13 +464,21 @@ struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType>, Device>
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||
|
||||
static bool size_large_enough(Index total_size) {
|
||||
#ifndef EIGEN_USE_COST_MODEL
|
||||
return total_size > 1024 * 1024;
|
||||
#else
|
||||
return true || total_size;
|
||||
#endif
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool evalSubExprsIfNeeded(CoeffReturnType* data) {
|
||||
m_impl.evalSubExprsIfNeeded(NULL);
|
||||
|
||||
// Use the FullReducer if possible.
|
||||
if (RunningFullReduction && internal::FullReducer<Self, Op, Device>::HasOptimizedImplementation &&
|
||||
((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) ||
|
||||
(!RunningOnGPU && (internal::array_prod(m_impl.dimensions()) > 1024 * 1024)))) {
|
||||
(!RunningOnGPU && size_large_enough(internal::array_prod(m_impl.dimensions()))))) {
|
||||
|
||||
bool need_assign = false;
|
||||
if (!data) {
|
||||
|
Loading…
Reference in New Issue
Block a user