mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Parallelize tensor contraction only by sharding dimension and use 'thread-local' memory for packing
This commit is contained in:
parent
871e2e5339
commit
eb21bab769
@ -335,6 +335,47 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
mem += rhs_size;
|
||||
}
|
||||
}
|
||||
|
||||
// If there is enough available parallelism in sharding dimension we can
|
||||
// call kernels in sync mode and use thread local memory for packed data.
|
||||
const Index sharding_dim_tasks = shard_by_col ? nn : nm;
|
||||
if (!parallel_pack_ && sharding_dim_tasks >= device_.numThreadsInPool()) {
|
||||
parallelize_by_sharding_dim_only_ = true;
|
||||
|
||||
int num_worker_threads = device_.numThreadsInPool();
|
||||
|
||||
if (shard_by_col) {
|
||||
can_use_thread_local_packed_ = new std::atomic<bool>[nn_];
|
||||
for (int i = 0; i < nn_; ++i)
|
||||
can_use_thread_local_packed_[i].store(true,
|
||||
std::memory_order_relaxed);
|
||||
|
||||
Index num_blocks = num_worker_threads * gn_;
|
||||
thread_local_packed_mem_ = device_.allocate(num_blocks * rhs_size);
|
||||
mem = static_cast<char*>(thread_local_packed_mem_);
|
||||
|
||||
thread_local_packed_rhs_.resize(num_blocks, nullptr);
|
||||
for (Index i = 0; i < num_blocks; ++i) {
|
||||
thread_local_packed_rhs_[i] = reinterpret_cast<RhsScalar*>(mem);
|
||||
mem += rhs_size;
|
||||
}
|
||||
} else {
|
||||
can_use_thread_local_packed_ = new std::atomic<bool>[nm_];
|
||||
for (int i = 0; i < nm_; ++i)
|
||||
can_use_thread_local_packed_[i].store(true,
|
||||
std::memory_order_relaxed);
|
||||
|
||||
Index num_blocks = num_worker_threads * gm_;
|
||||
thread_local_packed_mem_ = device_.allocate(num_blocks * lhs_size);
|
||||
mem = static_cast<char*>(thread_local_packed_mem_);
|
||||
|
||||
thread_local_packed_lhs_.resize(num_blocks, nullptr);
|
||||
for (Index i = 0; i < num_blocks; ++i) {
|
||||
thread_local_packed_lhs_[i] = reinterpret_cast<LhsScalar*>(mem);
|
||||
mem += lhs_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
~Context() {
|
||||
@ -343,6 +384,10 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
delete[] state_kernel_[x];
|
||||
}
|
||||
device_.deallocate(packed_mem_);
|
||||
if (parallelize_by_sharding_dim_only_) {
|
||||
device_.deallocate(thread_local_packed_mem_);
|
||||
delete[] can_use_thread_local_packed_;
|
||||
}
|
||||
}
|
||||
|
||||
void run() {
|
||||
@ -426,6 +471,42 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
void* packed_mem_;
|
||||
std::vector<LhsScalar*> packed_lhs_[P - 1];
|
||||
std::vector<RhsScalar*> packed_rhs_[P - 1];
|
||||
|
||||
// If there is enough concurrency in the sharding dimension, we choose not
|
||||
// to paralellize by the other dimension, and execute all kernels in sync
|
||||
// mode. This reduces parallelism from the nm_ x nn_ down to nn_
|
||||
// (shard_by_col==true) or nm_ (shard_by_col==false).
|
||||
bool parallelize_by_sharding_dim_only_ = false;
|
||||
|
||||
// If we choose to parallelize only by the sharding dimension, each thread
|
||||
// will have it's own "thead local" (not a c++ thread local storage) memory
|
||||
// for packed_lhs or packed_rhs (shard_by_col = false of true). This memory
|
||||
// can't be passed to a kernel that might execute on a different thread.
|
||||
//
|
||||
// In practice when we are ready to pack memory for the sharding dimension
|
||||
// (rhs if shard_by_col==true) of the K-th slice, all kernels for K-1 slice
|
||||
// already computed (99% of the time), and we can pack data into the thread
|
||||
// local storage, and guarantee that all the kernels will be executed
|
||||
// immediately in the same thread. This significantly increases L1 cache hit
|
||||
// ratio and reduces pressure on the memory bus.
|
||||
//
|
||||
// It's still possible that kernel for the K-th slice will be ready before
|
||||
// completion of the K-1 kernel, so we have to allocate "global" packed_lhs_
|
||||
// and packed_rhs_ to allow kernels to be executed later on a thread
|
||||
// different from the thread that was used for packing.
|
||||
void* thread_local_packed_mem_;
|
||||
|
||||
// Only one of these will beinitialized depending on shard_by_col value.
|
||||
std::vector<LhsScalar*> thread_local_packed_lhs_;
|
||||
std::vector<RhsScalar*> thread_local_packed_rhs_;
|
||||
|
||||
// After a particular shard for Kth slice missed thread local execution
|
||||
// opportunity (K-1 slice didn't complete kernels execution), we can no
|
||||
// longer schedule K+1 and following slices in thread local mode, because
|
||||
// there is no more guarantee that previous kernels were executed
|
||||
// sequentially in the same thread (size is nn_ or nm_).
|
||||
std::atomic<bool>* can_use_thread_local_packed_;
|
||||
|
||||
std::atomic<uint8_t>** state_kernel_[P];
|
||||
// state_switch_ is frequently modified by worker threads, while other
|
||||
// fields are read-only after constructor. Let's move it to a separate cache
|
||||
@ -434,22 +515,96 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
std::atomic<Index> state_packing_ready_[P];
|
||||
std::atomic<Index> state_switch_[P];
|
||||
|
||||
LhsScalar* packed_lhs(Index m, Index k, Index m1, bool use_thread_local) {
|
||||
if (use_thread_local) {
|
||||
eigen_assert(!shard_by_col_);
|
||||
|
||||
Index base_idx = gm_ * device_.currentThreadId();
|
||||
Index grain_idx = m1 - m * gm_;
|
||||
Index block_idx = base_idx + grain_idx;
|
||||
|
||||
return thread_local_packed_lhs_[block_idx];
|
||||
} else {
|
||||
return packed_lhs_[k % (P - 1)][m1];
|
||||
}
|
||||
}
|
||||
|
||||
RhsScalar* packed_rhs(Index n, Index k, Index n1, bool use_thread_local) {
|
||||
if (use_thread_local) {
|
||||
eigen_assert(shard_by_col_);
|
||||
|
||||
Index base_idx = gn_ * device_.currentThreadId();
|
||||
Index grain_idx = n1 - n * gn_;
|
||||
Index block_idx = base_idx + grain_idx;
|
||||
|
||||
return thread_local_packed_rhs_[block_idx];
|
||||
} else {
|
||||
return packed_rhs_[k % (P - 1)][n1];
|
||||
}
|
||||
}
|
||||
|
||||
// In following two methods (pack_lhs and pack_rhs), if we know for sure
|
||||
// that we'll be able to immediately call a kernel with packed data, and do
|
||||
// not submit it to the thread pool, we can use thread local memory for
|
||||
// packed data.
|
||||
//
|
||||
// We can only reliably check it if we are running all kernels in sync mode
|
||||
// (parallelize only by sharding dim). If kernel for m==0 (n==0) is ready to
|
||||
// run, it's guaranteed that all kernels with larger values of m (n) are
|
||||
// also ready, because we execute them in the same order for all K slices.
|
||||
|
||||
void pack_lhs(Index m, Index k) {
|
||||
bool use_thread_local = false;
|
||||
|
||||
if (parallelize_by_sharding_dim_only_ && !shard_by_col_ &&
|
||||
can_use_thread_local_packed_[m].load(std::memory_order_relaxed)) {
|
||||
if (state_kernel_[k % P][m][0].load(std::memory_order_relaxed) == 1) {
|
||||
use_thread_local = true;
|
||||
} else {
|
||||
// If we can't guarantee that all kernels in `k` slice will be
|
||||
// executed sequentially in current thread, it's no longer safe to use
|
||||
// thread local memory in followig slices along the k dimensions.
|
||||
eigen_assert(k > 0);
|
||||
can_use_thread_local_packed_[m].store(false,
|
||||
std::memory_order_relaxed);
|
||||
}
|
||||
}
|
||||
|
||||
const Index mend = m * gm_ + gm(m);
|
||||
for (Index m1 = m * gm_; m1 < mend; m1++)
|
||||
TensorContractionKernel::packLhs(packed_lhs_[k % (P - 1)][m1],
|
||||
TensorContractionKernel::packLhs(packed_lhs(m, k, m1, use_thread_local),
|
||||
lhs_.getSubMapper(m1 * bm_, k * bk_),
|
||||
bk(k), bm(m1));
|
||||
|
||||
if (!parallel_pack_ && shard_by_col_) {
|
||||
assert(!use_thread_local);
|
||||
signal_packing(k);
|
||||
} else {
|
||||
signal_switch(k + 1);
|
||||
for (Index n = nn_ - 1; n >= 0; n--) signal_kernel(m, n, k, n == 0);
|
||||
for (Index n = nn_ - 1; n >= 0; n--) {
|
||||
bool sync = parallelize_by_sharding_dim_only_ || n == 0;
|
||||
signal_kernel(m, n, k, sync, use_thread_local);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void pack_rhs(Index n, Index k) {
|
||||
bool use_thread_local = false;
|
||||
|
||||
if (parallelize_by_sharding_dim_only_ && shard_by_col_ &&
|
||||
can_use_thread_local_packed_[n].load(std::memory_order_relaxed)) {
|
||||
if (state_kernel_[k % P][0][n].load(std::memory_order_relaxed) == 1) {
|
||||
use_thread_local = true;
|
||||
} else {
|
||||
// If we can't guarantee that all kernels in `k` slice will be
|
||||
// executed sequentially in current thread, it's no longer safe to use
|
||||
// thread local memory in followig slices along the k dimensions.
|
||||
eigen_assert(k > 0);
|
||||
can_use_thread_local_packed_[n].store(false,
|
||||
std::memory_order_relaxed);
|
||||
}
|
||||
}
|
||||
|
||||
const Index nend = n * gn_ + gn(n);
|
||||
for (Index n1 = n * gn_; n1 < nend; n1++) {
|
||||
if (k == 0) {
|
||||
@ -462,20 +617,24 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
// deadlocks.
|
||||
memset(buffer_ + n1 * bn_ * m_, 0, bn(n1) * m_ * sizeof(Scalar));
|
||||
}
|
||||
TensorContractionKernel::packRhs(packed_rhs_[k % (P - 1)][n1],
|
||||
TensorContractionKernel::packRhs(packed_rhs(n, k, n1, use_thread_local),
|
||||
rhs_.getSubMapper(k * bk_, n1 * bn_),
|
||||
bk(k), bn(n1));
|
||||
}
|
||||
|
||||
if (parallel_pack_ || shard_by_col_) {
|
||||
signal_switch(k + 1);
|
||||
for (Index m = nm_ - 1; m >= 0; m--) signal_kernel(m, n, k, m == 0);
|
||||
for (Index m = nm_ - 1; m >= 0; m--) {
|
||||
bool sync = parallelize_by_sharding_dim_only_ || m == 0;
|
||||
signal_kernel(m, n, k, sync, use_thread_local);
|
||||
}
|
||||
} else {
|
||||
assert(!use_thread_local);
|
||||
signal_packing(k);
|
||||
}
|
||||
}
|
||||
|
||||
void kernel(Index m, Index n, Index k) {
|
||||
void kernel(Index m, Index n, Index k, bool use_thread_local) {
|
||||
// Note: order of iteration matters here. Iteration over m is innermost
|
||||
// because we want to reuse the same packed rhs in consecutive tasks
|
||||
// (rhs fits into L2$ while lhs only into L3$).
|
||||
@ -486,8 +645,10 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
for (Index m1 = m * gm_; m1 < mend; m1++) {
|
||||
const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_);
|
||||
TensorContractionKernel::invoke(
|
||||
output_mapper, packed_lhs_[k % (P - 1)][m1],
|
||||
packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1), Scalar(1));
|
||||
output_mapper,
|
||||
packed_lhs(m, k, m1, !shard_by_col_ && use_thread_local),
|
||||
packed_rhs(n, k, n1, shard_by_col_ && use_thread_local), bm(m1),
|
||||
bk(k), bn(n1), Scalar(1));
|
||||
|
||||
// We are done with the last task for the [m1, n1] block.
|
||||
if (k + 1 == nk_) {
|
||||
@ -501,8 +662,10 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
for (Index n1 = n * gn_; n1 < nend; n1++) {
|
||||
const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_);
|
||||
TensorContractionKernel::invoke(
|
||||
output_mapper, packed_lhs_[k % (P - 1)][m1],
|
||||
packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1), Scalar(1));
|
||||
output_mapper,
|
||||
packed_lhs(m, k, m1, !shard_by_col_ && use_thread_local),
|
||||
packed_rhs(n, k, n1, shard_by_col_ && use_thread_local), bm(m1),
|
||||
bk(k), bn(n1), Scalar(1));
|
||||
|
||||
// We are done with the last task for the [m1, n1] block.
|
||||
if (k + 1 == nk_) {
|
||||
@ -511,7 +674,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
}
|
||||
}
|
||||
}
|
||||
signal_kernel(m, n, k + 1, false);
|
||||
signal_kernel(m, n, k + 1, /*sync=*/false, /*use_thread_local=*/false);
|
||||
signal_switch(k + 2);
|
||||
}
|
||||
|
||||
@ -524,16 +687,23 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
enqueue_packing(k, shard_by_col_);
|
||||
}
|
||||
|
||||
void signal_kernel(Index m, Index n, Index k, bool sync) {
|
||||
void signal_kernel(Index m, Index n, Index k, bool sync,
|
||||
bool use_thread_local) {
|
||||
std::atomic<uint8_t>* state = &state_kernel_[k % P][m][n];
|
||||
Index s = state->load();
|
||||
eigen_assert(s > 0);
|
||||
if (s != 1 && state->fetch_sub(1) != 1) return;
|
||||
if (s != 1 && state->fetch_sub(1) != 1) {
|
||||
eigen_assert(!use_thread_local);
|
||||
return;
|
||||
}
|
||||
state->store(parallel_pack_ ? 3 : 2, std::memory_order_relaxed);
|
||||
if (sync)
|
||||
kernel(m, n, k);
|
||||
else
|
||||
device_.enqueueNoNotification([=]() { kernel(m, n, k); });
|
||||
if (sync) {
|
||||
kernel(m, n, k, use_thread_local);
|
||||
} else {
|
||||
eigen_assert(!use_thread_local);
|
||||
device_.enqueueNoNotification(
|
||||
[=]() { kernel(m, n, k, use_thread_local); });
|
||||
}
|
||||
}
|
||||
|
||||
void signal_switch(Index k, Index v = 1) {
|
||||
@ -589,7 +759,26 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
[=]() { enqueue_packing_helper(mid, end, k, rhs); });
|
||||
end = mid;
|
||||
}
|
||||
enqueue_packing_helper(start, end, k, rhs);
|
||||
|
||||
// Decide if we want to run first packing task (start == 0) in
|
||||
// async mode if we parallelize only by sharding dim:
|
||||
// (1) pack_lhs and pack_rhs call signal_switch before completing
|
||||
// all calls to signal_kernel, which in sync mode might lead
|
||||
// to the execution of the first kernel of the k+1 slice, before
|
||||
// completing a call to the last kernel of the k slice.
|
||||
// (2) all pack tasks for sharded dim must be executed in a thread
|
||||
// pool.
|
||||
bool pack_async =
|
||||
(start == 0) &&
|
||||
(parallelize_by_sharding_dim_only_&& shard_by_col_ == rhs) &&
|
||||
(k > 0 || device_.currentThreadId() < 0);
|
||||
|
||||
if (pack_async) {
|
||||
device_.enqueueNoNotification(
|
||||
[=]() { enqueue_packing_helper(start, end, k, rhs); });
|
||||
} else {
|
||||
enqueue_packing_helper(start, end, k, rhs);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -122,6 +122,12 @@ struct ThreadPoolDevice {
|
||||
return num_threads_;
|
||||
}
|
||||
|
||||
// Number of theads available in the underlying thread pool. This number can
|
||||
// be different from the value returned by numThreads().
|
||||
EIGEN_STRONG_INLINE int numThreadsInPool() const {
|
||||
return pool_->NumThreads();
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
|
||||
return l1CacheSize();
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user