mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-11-21 03:11:25 +08:00
Add test for real MatrixPowerTriangular.
This commit is contained in:
parent
eb33d307af
commit
e92fe88159
@ -20,7 +20,7 @@ namespace Eigen {
|
||||
* \tparam MatrixType type of the base, expected to be an instantiation
|
||||
* of the Matrix class template.
|
||||
*
|
||||
* This class is capable of computing complex upper triangular matrices raised
|
||||
* This class is capable of computing upper triangular matrices raised
|
||||
* to an arbitrary real power.
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
@ -37,7 +37,7 @@ class MatrixPowerTriangular : public MatrixPowerBase<MatrixPowerTriangular<Matri
|
||||
* The class stores a reference to A, so it should not be changed
|
||||
* (or destroyed) before evaluation.
|
||||
*/
|
||||
explicit MatrixPowerTriangular(const MatrixType& A) : Base(A,0), m_T(Base::m_A)
|
||||
explicit MatrixPowerTriangular(const MatrixType& A) : Base(A), m_T(Base::m_A)
|
||||
{ }
|
||||
|
||||
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
||||
@ -262,7 +262,7 @@ class MatrixPower : public MatrixPowerBase<MatrixPower<MatrixType>,MatrixType>
|
||||
* The class stores a reference to A, so it should not be changed
|
||||
* (or destroyed) before evaluation.
|
||||
*/
|
||||
explicit MatrixPower(const MatrixType& A) : Base(A,0)
|
||||
explicit MatrixPower(const MatrixType& A) : Base(A)
|
||||
{ }
|
||||
|
||||
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
||||
|
@ -75,10 +75,10 @@ class MatrixPowerBase
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
explicit MatrixPowerBase(const MatrixType& A, RealScalar cond) :
|
||||
explicit MatrixPowerBase(const MatrixType& A) :
|
||||
m_A(A),
|
||||
m_Id(MatrixType::Identity(A.rows(),A.cols())),
|
||||
m_conditionNumber(cond)
|
||||
m_Id(MatrixType::Identity(A.rows(), A.cols())),
|
||||
m_conditionNumber(0)
|
||||
{ eigen_assert(A.rows() == A.cols()); }
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
@ -173,10 +173,8 @@ struct traits<MatrixPowerProduct<Derived,_Lhs,_Rhs> >
|
||||
};
|
||||
};
|
||||
|
||||
template<bool IsComplex> struct recompose_complex_schur;
|
||||
|
||||
template<>
|
||||
struct recompose_complex_schur<true>
|
||||
template<int IsComplex>
|
||||
struct recompose_complex_schur
|
||||
{
|
||||
template<typename ResultType, typename MatrixType>
|
||||
static inline void run(ResultType& res, const MatrixType& T, const MatrixType& U)
|
||||
@ -184,14 +182,14 @@ struct recompose_complex_schur<true>
|
||||
};
|
||||
|
||||
template<>
|
||||
struct recompose_complex_schur<false>
|
||||
struct recompose_complex_schur<0>
|
||||
{
|
||||
template<typename ResultType, typename MatrixType>
|
||||
static inline void run(ResultType& res, const MatrixType& T, const MatrixType& U)
|
||||
{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
|
||||
};
|
||||
|
||||
template<typename Scalar, int IsComplex=NumTraits<Scalar>::IsComplex>
|
||||
template<typename Scalar, int IsComplex = NumTraits<Scalar>::IsComplex>
|
||||
struct matrix_power_unwinder
|
||||
{
|
||||
static inline Scalar run(const Scalar& eival, const Scalar& eival0, int unwindingNumber)
|
||||
@ -274,11 +272,8 @@ inline int matrix_power_get_pade_degree(long double normIminusT)
|
||||
|
||||
} // namespace internal
|
||||
|
||||
template<typename MatrixType, bool IsComplex=NumTraits<typename MatrixType::RealScalar>::IsComplex>
|
||||
class MatrixPowerTriangularAtomic;
|
||||
|
||||
template<typename MatrixType>
|
||||
class MatrixPowerTriangularAtomic<MatrixType,true>
|
||||
class MatrixPowerTriangularAtomic
|
||||
{
|
||||
private:
|
||||
enum {
|
||||
@ -289,7 +284,7 @@ class MatrixPowerTriangularAtomic<MatrixType,true>
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Array<Scalar,RowsAtCompileTime,1,ColMajor,MaxRowsAtCompileTime> ArrayType;
|
||||
|
||||
const MatrixType& m_T;
|
||||
const MatrixType& m_A;
|
||||
const MatrixType m_Id;
|
||||
|
||||
void computePade(int degree, const MatrixType& IminusT, MatrixType& res, RealScalar p) const;
|
||||
@ -302,19 +297,19 @@ class MatrixPowerTriangularAtomic<MatrixType,true>
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
MatrixPowerTriangularAtomic<MatrixType,true>::MatrixPowerTriangularAtomic(const MatrixType& T) :
|
||||
m_T(T),
|
||||
MatrixPowerTriangularAtomic<MatrixType>::MatrixPowerTriangularAtomic(const MatrixType& T) :
|
||||
m_A(T),
|
||||
m_Id(MatrixType::Identity(T.rows(), T.cols()))
|
||||
{ eigen_assert(T.rows() == T.cols()); }
|
||||
|
||||
template<typename MatrixType>
|
||||
void MatrixPowerTriangularAtomic<MatrixType,true>::compute(MatrixType& res, RealScalar p) const
|
||||
void MatrixPowerTriangularAtomic<MatrixType>::compute(MatrixType& res, RealScalar p) const
|
||||
{
|
||||
switch (m_T.rows()) {
|
||||
switch (m_A.rows()) {
|
||||
case 0:
|
||||
break;
|
||||
case 1:
|
||||
res(0,0) = std::pow(m_T(0,0), p);
|
||||
res(0,0) = std::pow(m_A(0,0), p);
|
||||
break;
|
||||
case 2:
|
||||
compute2x2(res, p);
|
||||
@ -325,7 +320,7 @@ void MatrixPowerTriangularAtomic<MatrixType,true>::compute(MatrixType& res, Real
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void MatrixPowerTriangularAtomic<MatrixType,true>::computePade(int degree, const MatrixType& IminusT, MatrixType& res,
|
||||
void MatrixPowerTriangularAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res,
|
||||
RealScalar p) const
|
||||
{
|
||||
int i = degree<<1;
|
||||
@ -338,33 +333,33 @@ void MatrixPowerTriangularAtomic<MatrixType,true>::computePade(int degree, const
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void MatrixPowerTriangularAtomic<MatrixType,true>::compute2x2(MatrixType& res, RealScalar p) const
|
||||
void MatrixPowerTriangularAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const
|
||||
{
|
||||
using std::abs;
|
||||
using std::pow;
|
||||
|
||||
ArrayType logTdiag = m_T.diagonal().array().log();
|
||||
res.coeffRef(0,0) = pow(m_T.coeff(0,0), p);
|
||||
ArrayType logTdiag = m_A.diagonal().array().log();
|
||||
res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
|
||||
|
||||
for (int i=1; i < m_T.cols(); ++i) {
|
||||
res.coeffRef(i,i) = pow(m_T.coeff(i,i), p);
|
||||
if (m_T.coeff(i-1,i-1) == m_T.coeff(i,i)) {
|
||||
res.coeffRef(i-1,i) = p * pow(m_T.coeff(i-1,i), p-1);
|
||||
for (int i=1; i < m_A.cols(); ++i) {
|
||||
res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
|
||||
if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i)) {
|
||||
res.coeffRef(i-1,i) = p * pow(m_A.coeff(i-1,i), p-1);
|
||||
}
|
||||
else if (2*abs(m_T.coeff(i-1,i-1)) < abs(m_T.coeff(i,i)) || 2*abs(m_T.coeff(i,i)) < abs(m_T.coeff(i-1,i-1))) {
|
||||
res.coeffRef(i-1,i) = m_T.coeff(i-1,i) * (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_T.coeff(i,i)-m_T.coeff(i-1,i-1));
|
||||
else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1))) {
|
||||
res.coeffRef(i-1,i) = m_A.coeff(i-1,i) * (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
|
||||
}
|
||||
else {
|
||||
int unwindingNumber = std::ceil((internal::imag(logTdiag[i]-logTdiag[i-1]) - M_PI) / (2*M_PI));
|
||||
Scalar w = internal::matrix_power_unwinder<Scalar>::run(m_T.coeff(i,i), m_T.coeff(i-1,i-1), unwindingNumber);
|
||||
res.coeffRef(i-1,i) = m_T.coeff(i-1,i) * RealScalar(2) * std::exp(RealScalar(0.5)*p*(logTdiag[i]+logTdiag[i-1])) *
|
||||
std::sinh(p * w) / (m_T.coeff(i,i) - m_T.coeff(i-1,i-1));
|
||||
Scalar w = internal::matrix_power_unwinder<Scalar>::run(m_A.coeff(i,i), m_A.coeff(i-1,i-1), unwindingNumber);
|
||||
res.coeffRef(i-1,i) = m_A.coeff(i-1,i) * RealScalar(2) * std::exp(RealScalar(0.5)*p*(logTdiag[i]+logTdiag[i-1])) *
|
||||
std::sinh(p * w) / (m_A.coeff(i,i) - m_A.coeff(i-1,i-1));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void MatrixPowerTriangularAtomic<MatrixType,true>::computeBig(MatrixType& res, RealScalar p) const
|
||||
void MatrixPowerTriangularAtomic<MatrixType>::computeBig(MatrixType& res, RealScalar p) const
|
||||
{
|
||||
const int digits = std::numeric_limits<RealScalar>::digits;
|
||||
const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision
|
||||
@ -372,10 +367,10 @@ void MatrixPowerTriangularAtomic<MatrixType,true>::computeBig(MatrixType& res, R
|
||||
digits <= 64? 2.4471944416607995472e-1L: // extended precision
|
||||
digits <= 106? 1.1016843812851143391275867258512e-1L: // double-double
|
||||
9.134603732914548552537150753385375e-2L; // quadruple precision
|
||||
MatrixType IminusT, sqrtT, T=m_T;
|
||||
MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
|
||||
RealScalar normIminusT;
|
||||
int degree, degree2, numberOfSquareRoots=0;
|
||||
bool hasExtraSquareRoot=false;
|
||||
int degree, degree2, numberOfSquareRoots = 0;
|
||||
bool hasExtraSquareRoot = false;
|
||||
|
||||
while (true) {
|
||||
IminusT = m_Id - T;
|
||||
@ -388,7 +383,7 @@ void MatrixPowerTriangularAtomic<MatrixType,true>::computeBig(MatrixType& res, R
|
||||
hasExtraSquareRoot = true;
|
||||
}
|
||||
MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
|
||||
T = sqrtT;
|
||||
T = sqrtT.template triangularView<Upper>();
|
||||
++numberOfSquareRoots;
|
||||
}
|
||||
computePade(degree, IminusT, res, p);
|
||||
|
@ -9,6 +9,33 @@
|
||||
|
||||
#include "matrix_functions.h"
|
||||
|
||||
template <typename MatrixType, int IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
|
||||
struct generateTriangularMatrix;
|
||||
|
||||
// for real matrices, make sure none of the eigenvalues are negative
|
||||
template <typename MatrixType>
|
||||
struct generateTriangularMatrix<MatrixType,0>
|
||||
{
|
||||
static void run(MatrixType& result, typename MatrixType::Index size)
|
||||
{
|
||||
result.resize(size, size);
|
||||
result.template triangularView<Upper>() = MatrixType::Random(size, size);
|
||||
for (typename MatrixType::Index i = 0; i < size; ++i)
|
||||
result.coeffRef(i,i) = std::abs(result.coeff(i,i));
|
||||
}
|
||||
};
|
||||
|
||||
// for complex matrices, any matrix is fine
|
||||
template <typename MatrixType>
|
||||
struct generateTriangularMatrix<MatrixType,1>
|
||||
{
|
||||
static void run(MatrixType& result, typename MatrixType::Index size)
|
||||
{
|
||||
result.resize(size, size);
|
||||
result.template triangularView<Upper>() = MatrixType::Random(size, size);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
void test2dRotation(double tol)
|
||||
{
|
||||
@ -59,7 +86,7 @@ void testExponentLaws(const MatrixType& m, double tol)
|
||||
MatrixType m1, m2, m3, m4, m5;
|
||||
RealScalar x, y;
|
||||
|
||||
for (int i=0; i<g_repeat; ++i) {
|
||||
for (int i=0; i < g_repeat; ++i) {
|
||||
generateTestMatrix<MatrixType>::run(m1, m.rows());
|
||||
MatrixPower<MatrixType> mpow(m1);
|
||||
|
||||
@ -90,7 +117,7 @@ void testProduct(const MatrixType& m, const VectorType& v, double tol)
|
||||
VectorType v1, v2, v3;
|
||||
RealScalar p;
|
||||
|
||||
for (int i=0; i<g_repeat; ++i) {
|
||||
for (int i=0; i < g_repeat; ++i) {
|
||||
generateTestMatrix<MatrixType>::run(m1, m.rows());
|
||||
MatrixPower<MatrixType> mpow(m1);
|
||||
|
||||
@ -99,7 +126,29 @@ void testProduct(const MatrixType& m, const VectorType& v, double tol)
|
||||
|
||||
v2.noalias() = mpow(p) * v1;
|
||||
v3.noalias() = mpow(p).eval() * v1;
|
||||
std::cout << "testMatrixVectorProduct: error powerm = " << relerr(v2, v3) << '\n';
|
||||
std::cout << "testProduct: error powerm = " << relerr(v2, v3) << '\n';
|
||||
VERIFY(v2.isApprox(v3, static_cast<RealScalar>(tol)));
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename VectorType>
|
||||
void testTriangularProduct(const MatrixType& m, const VectorType& v, double tol)
|
||||
{
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
MatrixType m1;
|
||||
VectorType v1, v2, v3;
|
||||
RealScalar p;
|
||||
|
||||
for (int i=0; i < g_repeat; ++i) {
|
||||
generateTriangularMatrix<MatrixType>::run(m1, m.rows());
|
||||
MatrixPowerTriangular<MatrixType> mpow(m1);
|
||||
|
||||
v1 = VectorType::Random(v.rows(), v.cols());
|
||||
p = internal::random<RealScalar>();
|
||||
|
||||
v2.noalias() = mpow(p) * v1;
|
||||
v3.noalias() = mpow(p).eval() * v1;
|
||||
std::cout << "testTriangularProduct: error powerm = " << relerr(v2, v3) << '\n';
|
||||
VERIFY(v2.isApprox(v3, static_cast<RealScalar>(tol)));
|
||||
}
|
||||
}
|
||||
@ -109,6 +158,7 @@ void testMatrixVector(const MatrixType& m, const VectorType& v, double tol)
|
||||
{
|
||||
testExponentLaws(m,tol);
|
||||
testProduct(m,v,tol);
|
||||
testTriangularProduct(m,v,tol);
|
||||
}
|
||||
|
||||
void test_matrix_power()
|
||||
|
Loading…
Reference in New Issue
Block a user