mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
Add serialization for sparse matrix and sparse vector.
This commit is contained in:
parent
044f3f6234
commit
e7b1ad0315
@ -1496,6 +1496,125 @@ struct evaluator<SparseMatrix<Scalar_,Options_,StorageIndex_> >
|
||||
|
||||
}
|
||||
|
||||
// Specialization for SparseMatrix.
|
||||
// Serializes [rows, cols, isCompressed, outerSize, numNonZeros, innerNonZeros,
|
||||
// outerIndices, innerIndices, values].
|
||||
template <typename Scalar, int Options, typename StorageIndex>
|
||||
class Serializer<SparseMatrix<Scalar, Options, StorageIndex>, void> {
|
||||
public:
|
||||
typedef SparseMatrix<Scalar, Options, StorageIndex> SparseMat;
|
||||
|
||||
struct Header {
|
||||
typename SparseMat::Index rows;
|
||||
typename SparseMat::Index cols;
|
||||
bool compressed;
|
||||
Index outer_size;
|
||||
Index num_non_zeros;
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC size_t size(const SparseMat& value) const {
|
||||
// innerNonZeros.
|
||||
std::size_t num_storage_indices =
|
||||
value.isCompressed() ? 0 : value.outerSize();
|
||||
// Outer indices.
|
||||
num_storage_indices += value.outerSize() + 1;
|
||||
// Inner indices.
|
||||
num_storage_indices += value.nonZeros();
|
||||
// Values.
|
||||
std::size_t num_values = value.nonZeros();
|
||||
return sizeof(Header) + sizeof(Scalar) * num_values +
|
||||
sizeof(StorageIndex) * num_storage_indices;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC uint8_t* serialize(uint8_t* dest, uint8_t* end,
|
||||
const SparseMat& value) {
|
||||
if (EIGEN_PREDICT_FALSE(dest == nullptr)) return nullptr;
|
||||
if (EIGEN_PREDICT_FALSE(dest + size(value) > end)) return nullptr;
|
||||
|
||||
const size_t header_bytes = sizeof(Header);
|
||||
Header header = {value.rows(), value.cols(), value.isCompressed(),
|
||||
value.outerSize(), value.nonZeros()};
|
||||
EIGEN_USING_STD(memcpy)
|
||||
memcpy(dest, &header, header_bytes);
|
||||
dest += header_bytes;
|
||||
|
||||
// innerNonZeros.
|
||||
size_t data_bytes = sizeof(StorageIndex) * header.outer_size;
|
||||
if (!header.compressed) {
|
||||
memcpy(dest, value.innerNonZeroPtr(), data_bytes);
|
||||
dest += data_bytes;
|
||||
}
|
||||
|
||||
// Outer indices.
|
||||
data_bytes = sizeof(StorageIndex) * (header.outer_size + 1);
|
||||
memcpy(dest, value.outerIndexPtr(), data_bytes);
|
||||
dest += data_bytes;
|
||||
|
||||
// Inner indices.
|
||||
data_bytes = sizeof(StorageIndex) * header.num_non_zeros;
|
||||
memcpy(dest, value.innerIndexPtr(), data_bytes);
|
||||
dest += data_bytes;
|
||||
|
||||
// Values.
|
||||
data_bytes = sizeof(Scalar) * header.num_non_zeros;
|
||||
memcpy(dest, value.valuePtr(), data_bytes);
|
||||
dest += data_bytes;
|
||||
|
||||
return dest;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC const uint8_t* deserialize(const uint8_t* src,
|
||||
const uint8_t* end,
|
||||
SparseMat& value) const {
|
||||
if (EIGEN_PREDICT_FALSE(src == nullptr)) return nullptr;
|
||||
if (EIGEN_PREDICT_FALSE(src + sizeof(Header) > end)) return nullptr;
|
||||
|
||||
const size_t header_bytes = sizeof(Header);
|
||||
Header header;
|
||||
EIGEN_USING_STD(memcpy)
|
||||
memcpy(&header, src, header_bytes);
|
||||
src += header_bytes;
|
||||
|
||||
value.setZero();
|
||||
value.resize(header.rows, header.cols);
|
||||
|
||||
// Initialize compressed state and inner non-zeros.
|
||||
size_t data_bytes = sizeof(StorageIndex) * header.outer_size;
|
||||
if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr;
|
||||
if (header.compressed) {
|
||||
value.makeCompressed();
|
||||
value.resizeNonZeros(header.num_non_zeros);
|
||||
} else {
|
||||
// Temporarily load inner sizes, then reserve.
|
||||
std::vector<StorageIndex> inner_sizes(header.outer_size);
|
||||
memcpy(inner_sizes.data(), src, data_bytes);
|
||||
src += data_bytes;
|
||||
|
||||
value.uncompress();
|
||||
value.reserve(inner_sizes);
|
||||
memcpy(value.innerNonZeroPtr(), inner_sizes.data(), data_bytes);
|
||||
}
|
||||
|
||||
// Outer indices.
|
||||
data_bytes = sizeof(StorageIndex) * (header.outer_size + 1);
|
||||
memcpy(value.outerIndexPtr(), src, data_bytes);
|
||||
src += data_bytes;
|
||||
|
||||
// Inner indices.
|
||||
data_bytes = sizeof(StorageIndex) * header.num_non_zeros;
|
||||
if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr;
|
||||
memcpy(value.innerIndexPtr(), src, data_bytes);
|
||||
src += data_bytes;
|
||||
|
||||
// Values.
|
||||
data_bytes = sizeof(Scalar) * header.num_non_zeros;
|
||||
if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr;
|
||||
memcpy(value.valuePtr(), src, data_bytes);
|
||||
src += data_bytes;
|
||||
return src;
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSEMATRIX_H
|
||||
|
@ -495,6 +495,78 @@ struct sparse_vector_assign_selector<Dest,Src,SVA_RuntimeSwitch> {
|
||||
|
||||
}
|
||||
|
||||
// Specialization for SparseVector.
|
||||
// Serializes [size, numNonZeros, innerIndices, values].
|
||||
template <typename Scalar, int Options, typename StorageIndex>
|
||||
class Serializer<SparseVector<Scalar, Options, StorageIndex>, void> {
|
||||
public:
|
||||
typedef SparseVector<Scalar, Options, StorageIndex> SparseMat;
|
||||
|
||||
struct Header {
|
||||
typename SparseMat::Index size;
|
||||
Index num_non_zeros;
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC size_t size(const SparseMat& value) const {
|
||||
return sizeof(Header) +
|
||||
(sizeof(Scalar) + sizeof(StorageIndex)) * value.nonZeros();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC uint8_t* serialize(uint8_t* dest, uint8_t* end,
|
||||
const SparseMat& value) {
|
||||
if (EIGEN_PREDICT_FALSE(dest == nullptr)) return nullptr;
|
||||
if (EIGEN_PREDICT_FALSE(dest + size(value) > end)) return nullptr;
|
||||
|
||||
const size_t header_bytes = sizeof(Header);
|
||||
Header header = {value.innerSize(), value.nonZeros()};
|
||||
EIGEN_USING_STD(memcpy)
|
||||
memcpy(dest, &header, header_bytes);
|
||||
dest += header_bytes;
|
||||
|
||||
// Inner indices.
|
||||
std::size_t data_bytes = sizeof(StorageIndex) * header.num_non_zeros;
|
||||
memcpy(dest, value.innerIndexPtr(), data_bytes);
|
||||
dest += data_bytes;
|
||||
|
||||
// Values.
|
||||
data_bytes = sizeof(Scalar) * header.num_non_zeros;
|
||||
memcpy(dest, value.valuePtr(), data_bytes);
|
||||
dest += data_bytes;
|
||||
|
||||
return dest;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC const uint8_t* deserialize(const uint8_t* src,
|
||||
const uint8_t* end,
|
||||
SparseMat& value) const {
|
||||
if (EIGEN_PREDICT_FALSE(src == nullptr)) return nullptr;
|
||||
if (EIGEN_PREDICT_FALSE(src + sizeof(Header) > end)) return nullptr;
|
||||
|
||||
const size_t header_bytes = sizeof(Header);
|
||||
Header header;
|
||||
EIGEN_USING_STD(memcpy)
|
||||
memcpy(&header, src, header_bytes);
|
||||
src += header_bytes;
|
||||
|
||||
value.setZero();
|
||||
value.resize(header.size);
|
||||
value.resizeNonZeros(header.num_non_zeros);
|
||||
|
||||
// Inner indices.
|
||||
std::size_t data_bytes = sizeof(StorageIndex) * header.num_non_zeros;
|
||||
if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr;
|
||||
memcpy(value.innerIndexPtr(), src, data_bytes);
|
||||
src += data_bytes;
|
||||
|
||||
// Values.
|
||||
data_bytes = sizeof(Scalar) * header.num_non_zeros;
|
||||
if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr;
|
||||
memcpy(value.valuePtr(), src, data_bytes);
|
||||
src += data_bytes;
|
||||
return src;
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSEVECTOR_H
|
||||
|
@ -670,6 +670,12 @@ bool test_isCwiseApprox(const DenseBase<Derived1>& m1,
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename Derived1, typename Derived2>
|
||||
bool test_isCwiseApprox(const SparseMatrixBase<Derived1>& m1,
|
||||
const SparseMatrixBase<Derived2>& m2, bool exact) {
|
||||
return test_isCwiseApprox(m1.toDense(), m2.toDense(), exact);
|
||||
}
|
||||
|
||||
template<typename T, typename U>
|
||||
bool test_is_equal(const T& actual, const U& expected, bool expect_equal)
|
||||
{
|
||||
|
@ -9,8 +9,71 @@
|
||||
|
||||
#include "main.h"
|
||||
|
||||
#include <vector>
|
||||
#include <Eigen/Core>
|
||||
#include <Eigen/SparseCore>
|
||||
#include <vector>
|
||||
|
||||
template <typename T>
|
||||
struct RandomImpl {
|
||||
static auto Create(Eigen::Index rows, Eigen::Index cols) {
|
||||
return T::Random(rows, cols);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Scalar, int Options, typename DenseIndex>
|
||||
struct RandomImpl<Eigen::SparseMatrix<Scalar, Options, DenseIndex>> {
|
||||
using T = Eigen::SparseMatrix<Scalar, Options, DenseIndex>;
|
||||
|
||||
static auto Create(Eigen::Index rows, Eigen::Index cols) {
|
||||
Eigen::SparseMatrix<Scalar, Options, DenseIndex> M(rows, cols);
|
||||
M.setZero();
|
||||
double density = 0.1;
|
||||
|
||||
// Reserve some space along each inner dim.
|
||||
int nnz = static_cast<int>(density * 1.5 * M.innerSize());
|
||||
M.reserve(Eigen::VectorXi::Constant(M.outerSize(), nnz));
|
||||
|
||||
for (int j = 0; j < M.outerSize(); j++) {
|
||||
for (int i = 0; i < M.innerSize(); i++) {
|
||||
bool zero = (Eigen::internal::random<double>(0, 1) > density);
|
||||
if (!zero) {
|
||||
M.insertByOuterInner(j, i) = internal::random<Scalar>();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 50-50 whether to compress or not.
|
||||
if (Eigen::internal::random<double>(0, 1) >= 0.5) {
|
||||
M.makeCompressed();
|
||||
}
|
||||
|
||||
return M;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Scalar, int Options, typename DenseIndex>
|
||||
struct RandomImpl<Eigen::SparseVector<Scalar, Options, DenseIndex>> {
|
||||
using T = Eigen::SparseVector<Scalar, Options, DenseIndex>;
|
||||
|
||||
static auto Create(Eigen::Index rows, Eigen::Index cols) {
|
||||
Eigen::SparseVector<Scalar, Options, DenseIndex> M(rows, cols);
|
||||
M.setZero();
|
||||
double density = 0.1;
|
||||
|
||||
// Reserve some space along each inner dim.
|
||||
int nnz = static_cast<int>(density * 1.5 * M.innerSize());
|
||||
M.reserve(nnz);
|
||||
|
||||
for (int i = 0; i < M.innerSize(); i++) {
|
||||
bool zero = (Eigen::internal::random<double>(0, 1) > density);
|
||||
if (!zero) {
|
||||
M.insert(i) = internal::random<Scalar>();
|
||||
}
|
||||
}
|
||||
|
||||
return M;
|
||||
}
|
||||
};
|
||||
|
||||
struct MyPodType {
|
||||
double x;
|
||||
@ -68,7 +131,7 @@ void test_eigen_type(const T& type) {
|
||||
const Index rows = type.rows();
|
||||
const Index cols = type.cols();
|
||||
|
||||
const T initial = T::Random(rows, cols);
|
||||
const T initial = RandomImpl<T>::Create(rows, cols);
|
||||
|
||||
// Serialize.
|
||||
Eigen::Serializer<T> serializer;
|
||||
@ -160,6 +223,8 @@ EIGEN_DECLARE_TEST(serializer)
|
||||
CALL_SUBTEST( test_eigen_type(Eigen::Vector3f()) );
|
||||
CALL_SUBTEST( test_eigen_type(Eigen::Matrix4d()) );
|
||||
CALL_SUBTEST( test_eigen_type(Eigen::MatrixXd(15, 17)) );
|
||||
CALL_SUBTEST(test_eigen_type(Eigen::SparseMatrix<float>(13, 12)));
|
||||
CALL_SUBTEST(test_eigen_type(Eigen::SparseVector<float>(17)));
|
||||
|
||||
CALL_SUBTEST( test_dense_types( Eigen::Array33f(),
|
||||
Eigen::ArrayXd(10),
|
||||
|
Loading…
Reference in New Issue
Block a user