This commit is contained in:
Gael Guennebaud 2011-01-27 18:03:13 +01:00
commit e761ba68f7
18 changed files with 508 additions and 66 deletions

View File

@ -336,6 +336,13 @@ class Matrix
template<typename OtherDerived>
Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
explicit Matrix(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
template<typename OtherDerived>
Matrix& operator=(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
#endif
// allow to extend Matrix outside Eigen
#ifdef EIGEN_MATRIX_PLUGIN
#include EIGEN_MATRIX_PLUGIN

View File

@ -204,7 +204,7 @@ template<typename Derived> class MatrixBase
template<typename OtherDerived>
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
#if EIGEN2_SUPPORT_STAGE == STAGE15_RESOLVE_API_CONFLICTS_WARN
EIGEN_DEPRECATED Scalar
EIGEN_DEPRECATED
#endif
dot(const MatrixBase<OtherDerived>& other) const;
#endif

View File

@ -220,7 +220,6 @@ template<typename Scalar> class JacobiRotation;
template<typename Derived, int _Dim> class RotationBase;
template<typename Lhs, typename Rhs> class Cross;
template<typename Derived> class QuaternionBase;
template<typename Scalar, int Options = AutoAlign> class Quaternion;
template<typename Scalar> class Rotation2D;
template<typename Scalar> class AngleAxis;
template<typename Scalar,int Dim> class Translation;
@ -239,6 +238,7 @@ template<typename Scalar,int Dim> class eigen2_Scaling;
#endif
#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
template<typename Scalar> class Quaternion;
template<typename Scalar,int Dim> class Transform;
template <typename _Scalar, int _AmbientDim> class ParametrizedLine;
template <typename _Scalar, int _AmbientDim> class Hyperplane;
@ -246,6 +246,7 @@ template<typename Scalar,int Dim> class Scaling;
#endif
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
template<typename Scalar, int Options = AutoAlign> class Quaternion;
template<typename Scalar,int Dim,int Mode,int _Options=AutoAlign> class Transform;
template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class ParametrizedLine;
template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class Hyperplane;

View File

@ -22,8 +22,7 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ALIGNEDBOX_H
#define EIGEN_ALIGNEDBOX_H
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
/** \geometry_module \ingroup Geometry_Module
* \nonstableyet
@ -169,5 +168,3 @@ inline Scalar AlignedBox<Scalar,AmbiantDim>::squaredExteriorDistance(const Vecto
}
return dist2;
}
#endif // EIGEN_ALIGNEDBOX_H

View File

@ -58,6 +58,10 @@
#define Hyperplane eigen2_Hyperplane
#define ParametrizedLine eigen2_ParametrizedLine
#define ei_toRotationMatrix eigen2_ei_toRotationMatrix
#define ei_quaternion_assign_impl eigen2_ei_quaternion_assign_impl
#define ei_transform_product_impl eigen2_ei_transform_product_impl
#include "RotationBase.h"
#include "Rotation2D.h"
#include "Quaternion.h"
@ -69,6 +73,10 @@
#include "Hyperplane.h"
#include "ParametrizedLine.h"
#undef ei_toRotationMatrix
#undef ei_quaternion_assign_impl
#undef ei_transform_product_impl
#undef RotationBase
#undef Rotation2D
#undef Rotation2Df

View File

@ -22,8 +22,8 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ANGLEAXIS_H
#define EIGEN_ANGLEAXIS_H
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
/** \geometry_module \ingroup Geometry_Module
*
@ -224,5 +224,3 @@ AngleAxis<Scalar>::toRotationMatrix(void) const
return res;
}
#endif // EIGEN_ANGLEAXIS_H

View File

@ -23,8 +23,7 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_HYPERPLANE_H
#define EIGEN_HYPERPLANE_H
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
/** \geometry_module \ingroup Geometry_Module
*
@ -71,7 +70,7 @@ public:
: m_coeffs(n.size()+1)
{
normal() = n;
offset() = -e.dot(n);
offset() = -e.eigen2_dot(n);
}
/** Constructs a plane from its normal \a n and distance to the origin \a d
@ -92,7 +91,7 @@ public:
{
Hyperplane result(p0.size());
result.normal() = (p1 - p0).unitOrthogonal();
result.offset() = -result.normal().dot(p0);
result.offset() = -result.normal().eigen2_dot(p0);
return result;
}
@ -104,7 +103,7 @@ public:
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
Hyperplane result(p0.size());
result.normal() = (p2 - p0).cross(p1 - p0).normalized();
result.offset() = -result.normal().dot(p0);
result.offset() = -result.normal().eigen2_dot(p0);
return result;
}
@ -116,7 +115,7 @@ public:
explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
{
normal() = parametrized.direction().unitOrthogonal();
offset() = -normal().dot(parametrized.origin());
offset() = -normal().eigen2_dot(parametrized.origin());
}
~Hyperplane() {}
@ -133,7 +132,7 @@ public:
/** \returns the signed distance between the plane \c *this and a point \a p.
* \sa absDistance()
*/
inline Scalar signedDistance(const VectorType& p) const { return p.dot(normal()) + offset(); }
inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); }
/** \returns the absolute distance between the plane \c *this and a point \a p.
* \sa signedDistance()
@ -231,7 +230,7 @@ public:
TransformTraits traits = Affine)
{
transform(t.linear(), traits);
offset() -= t.translation().dot(normal());
offset() -= t.translation().eigen2_dot(normal());
return *this;
}
@ -264,5 +263,3 @@ protected:
Coefficients m_coeffs;
};
#endif // EIGEN_HYPERPLANE_H

View File

@ -23,8 +23,8 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PARAMETRIZEDLINE_H
#define EIGEN_PARAMETRIZEDLINE_H
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
/** \geometry_module \ingroup Geometry_Module
*
@ -85,7 +85,7 @@ public:
RealScalar squaredDistance(const VectorType& p) const
{
VectorType diff = p-origin();
return (diff - diff.dot(direction())* direction()).squaredNorm();
return (diff - diff.eigen2_dot(direction())* direction()).squaredNorm();
}
/** \returns the distance of a point \a p to its projection onto the line \c *this.
* \sa squaredDistance()
@ -94,7 +94,7 @@ public:
/** \returns the projection of a point \a p onto the line \c *this. */
VectorType projection(const VectorType& p) const
{ return origin() + (p-origin()).dot(direction()) * direction(); }
{ return origin() + (p-origin()).eigen2_dot(direction()) * direction(); }
Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
@ -148,8 +148,6 @@ inline ParametrizedLine<_Scalar, _AmbientDim>::ParametrizedLine(const Hyperplane
template <typename _Scalar, int _AmbientDim>
inline _Scalar ParametrizedLine<_Scalar, _AmbientDim>::intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane)
{
return -(hyperplane.offset()+origin().dot(hyperplane.normal()))
/(direction().dot(hyperplane.normal()));
return -(hyperplane.offset()+origin().eigen2_dot(hyperplane.normal()))
/(direction().eigen2_dot(hyperplane.normal()));
}
#endif // EIGEN_PARAMETRIZEDLINE_H

View File

@ -22,8 +22,7 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_QUATERNION_H
#define EIGEN_QUATERNION_H
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
template<typename Other,
int OtherRows=Other::RowsAtCompileTime,
@ -172,7 +171,7 @@ public:
* corresponds to the cosine of half the angle between the two rotations.
* \sa angularDistance()
*/
inline Scalar dot(const Quaternion& other) const { return m_coeffs.dot(other.m_coeffs); }
inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); }
inline Scalar angularDistance(const Quaternion& other) const;
@ -353,7 +352,7 @@ inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBas
{
Vector3 v0 = a.normalized();
Vector3 v1 = b.normalized();
Scalar c = v0.dot(v1);
Scalar c = v0.eigen2_dot(v1);
// if dot == 1, vectors are the same
if (ei_isApprox(c,Scalar(1)))
@ -412,12 +411,12 @@ inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
}
/** \returns the angle (in radian) between two rotations
* \sa dot()
* \sa eigen2_dot()
*/
template <typename Scalar>
inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const
{
double d = ei_abs(this->dot(other));
double d = ei_abs(this->eigen2_dot(other));
if (d>=1.0)
return 0;
return Scalar(2) * std::acos(d);
@ -430,7 +429,7 @@ template <typename Scalar>
Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
{
static const Scalar one = Scalar(1) - machine_epsilon<Scalar>();
Scalar d = this->dot(other);
Scalar d = this->eigen2_dot(other);
Scalar absD = ei_abs(d);
Scalar scale0;
@ -505,5 +504,3 @@ struct ei_quaternion_assign_impl<Other,4,1>
q.coeffs() = vec;
}
};
#endif // EIGEN_QUATERNION_H

View File

@ -22,8 +22,8 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ROTATION2D_H
#define EIGEN_ROTATION2D_H
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
/** \geometry_module \ingroup Geometry_Module
*
@ -155,5 +155,3 @@ Rotation2D<Scalar>::toRotationMatrix(void) const
Scalar cosA = ei_cos(m_angle);
return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
}
#endif // EIGEN_ROTATION2D_H

View File

@ -22,8 +22,7 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ROTATIONBASE_H
#define EIGEN_ROTATIONBASE_H
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
// this file aims to contains the various representations of rotation/orientation
// in 2D and 3D space excepted Matrix and Quaternion.
@ -133,5 +132,3 @@ inline static const MatrixBase<OtherDerived>& ei_toRotationMatrix(const MatrixBa
YOU_MADE_A_PROGRAMMING_MISTAKE)
return mat;
}
#endif // EIGEN_ROTATIONBASE_H

View File

@ -22,8 +22,8 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SCALING_H
#define EIGEN_SCALING_H
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
/** \geometry_module \ingroup Geometry_Module
*
@ -177,5 +177,3 @@ Scaling<Scalar,Dim>::operator* (const TransformType& t) const
res.prescale(m_coeffs);
return res;
}
#endif // EIGEN_SCALING_H

View File

@ -23,8 +23,8 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRANSFORM_H
#define EIGEN_TRANSFORM_H
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
// Note that we have to pass Dim and HDim because it is not allowed to use a template
// parameter to define a template specialization. To be more precise, in the following
@ -796,5 +796,3 @@ struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
{ return ((tr.linear() * other) + tr.translation())
* (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
};
#endif // EIGEN_TRANSFORM_H

View File

@ -22,8 +22,8 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRANSLATION_H
#define EIGEN_TRANSLATION_H
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
/** \geometry_module \ingroup Geometry_Module
*
@ -194,5 +194,3 @@ Translation<Scalar,Dim>::operator* (const TransformType& t) const
res.pretranslate(m_coeffs);
return res;
}
#endif // EIGEN_TRANSLATION_H

View File

@ -22,8 +22,8 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_LEASTSQUARES_H
#define EIGEN_LEASTSQUARES_H
#ifndef EIGEN2_LEASTSQUARES_H
#define EIGEN2_LEASTSQUARES_H
/** \ingroup LeastSquares_Module
*
@ -179,4 +179,4 @@ void fitHyperplane(int numPoints,
}
#endif // EIGEN_LEASTSQUARES_H
#endif // EIGEN2_LEASTSQUARES_H

View File

@ -22,8 +22,8 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SVD_H
#define EIGEN_SVD_H
#ifndef EIGEN2_SVD_H
#define EIGEN2_SVD_H
/** \ingroup SVD_Module
* \nonstableyet
@ -150,7 +150,7 @@ void SVD<MatrixType>::compute(const MatrixType& matrix)
if ((k < nct) && (m_sigma[k] != 0.0))
{
// Apply the transformation.
Scalar t = matA.col(k).end(m-k).dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ??
Scalar t = matA.col(k).end(m-k).eigen2_dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ??
t = -t/matA(k,k);
matA.col(j).end(m-k) += t * matA.col(k).end(m-k);
}
@ -216,7 +216,7 @@ void SVD<MatrixType>::compute(const MatrixType& matrix)
{
for (j = k+1; j < nu; ++j)
{
Scalar t = m_matU.col(k).end(m-k).dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ?
Scalar t = m_matU.col(k).end(m-k).eigen2_dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ?
t = -t/m_matU(k,k);
m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
}
@ -242,7 +242,7 @@ void SVD<MatrixType>::compute(const MatrixType& matrix)
{
for (j = k+1; j < nu; ++j)
{
Scalar t = m_matV.col(k).end(n-k-1).dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ?
Scalar t = m_matV.col(k).end(n-k-1).eigen2_dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ?
t = -t/m_matV(k+1,k);
m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1);
}
@ -646,4 +646,4 @@ MatrixBase<Derived>::svd() const
return SVD<PlainObject>(derived());
}
#endif // EIGEN_SVD_H
#endif // EIGEN2_SVD_H

View File

@ -36,6 +36,7 @@ ei_add_test(eigen2_qr)
ei_add_test(eigen2_eigensolver " " "${GSL_LIBRARIES}")
ei_add_test(eigen2_svd)
ei_add_test(eigen2_geometry)
ei_add_test(eigen2_geometry_with_eigen2_prefix)
ei_add_test(eigen2_hyperplane)
ei_add_test(eigen2_parametrizedline)
ei_add_test(eigen2_alignedbox)

View File

@ -0,0 +1,449 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#define EIGEN2_SUPPORT_STAGE15_RESOLVE_API_CONFLICTS_WARN
#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/SVD>
template<typename Scalar> void geometry(void)
{
/* this test covers the following files:
Cross.h Quaternion.h, Transform.cpp
*/
typedef Matrix<Scalar,2,2> Matrix2;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,4,4> Matrix4;
typedef Matrix<Scalar,2,1> Vector2;
typedef Matrix<Scalar,3,1> Vector3;
typedef Matrix<Scalar,4,1> Vector4;
typedef eigen2_Quaternion<Scalar> Quaternionx;
typedef eigen2_AngleAxis<Scalar> AngleAxisx;
typedef eigen2_Transform<Scalar,2> Transform2;
typedef eigen2_Transform<Scalar,3> Transform3;
typedef eigen2_Scaling<Scalar,2> Scaling2;
typedef eigen2_Scaling<Scalar,3> Scaling3;
typedef eigen2_Translation<Scalar,2> Translation2;
typedef eigen2_Translation<Scalar,3> Translation3;
Scalar largeEps = test_precision<Scalar>();
if (ei_is_same_type<Scalar,float>::ret)
largeEps = 1e-2f;
Vector3 v0 = Vector3::Random(),
v1 = Vector3::Random(),
v2 = Vector3::Random();
Vector2 u0 = Vector2::Random();
Matrix3 matrot1;
Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
// cross product
VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).eigen2_dot(v1), Scalar(1));
Matrix3 m;
m << v0.normalized(),
(v0.cross(v1)).normalized(),
(v0.cross(v1).cross(v0)).normalized();
VERIFY(m.isUnitary());
// Quaternion: Identity(), setIdentity();
Quaternionx q1, q2;
q2.setIdentity();
VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
q1.coeffs().setRandom();
VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
// unitOrthogonal
VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().eigen2_dot(u0), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().eigen2_dot(v0), Scalar(1));
VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1));
VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1));
VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0);
VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.eigen2_dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
q1 = AngleAxisx(a, v0.normalized());
q2 = AngleAxisx(a, v1.normalized());
// angular distance
Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle());
if (refangle>Scalar(M_PI))
refangle = Scalar(2)*Scalar(M_PI) - refangle;
if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
{
VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps));
}
// rotation matrix conversion
VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
VERIFY_IS_APPROX(q1 * q2 * v2,
q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox(
q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
q2 = q1.toRotationMatrix();
VERIFY_IS_APPROX(q1*v1,q2*v1);
matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX())
* AngleAxisx(Scalar(0.2), Vector3::UnitY())
* AngleAxisx(Scalar(0.3), Vector3::UnitZ());
VERIFY_IS_APPROX(matrot1 * v1,
AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix()
* (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix()
* (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
// angle-axis conversion
AngleAxisx aa = q1;
VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
// from two vector creation
VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
// inverse and conjugate
VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
// AngleAxis
VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(),
Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());
AngleAxisx aa1;
m = q1.toRotationMatrix();
aa1 = m;
VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(),
Quaternionx(m).toRotationMatrix());
// Transform
// TODO complete the tests !
a = 0;
while (ei_abs(a)<Scalar(0.1))
a = ei_random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI));
q1 = AngleAxisx(a, v0.normalized());
Transform3 t0, t1, t2;
// first test setIdentity() and Identity()
t0.setIdentity();
VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
t0.matrix().setZero();
t0 = Transform3::Identity();
VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
t0.linear() = q1.toRotationMatrix();
t1.setIdentity();
t1.linear() = q1.toRotationMatrix();
v0 << 50, 2, 1;//= ei_random_matrix<Vector3>().cwiseProduct(Vector3(10,2,0.5));
t0.scale(v0);
t1.prescale(v0);
VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x());
//VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x()));
t0.setIdentity();
t1.setIdentity();
v1 << 1, 2, 3;
t0.linear() = q1.toRotationMatrix();
t0.pretranslate(v0);
t0.scale(v1);
t1.linear() = q1.conjugate().toRotationMatrix();
t1.prescale(v1.cwise().inverse());
t1.translate(-v0);
VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>()));
t1.fromPositionOrientationScale(v0, q1, v1);
VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
VERIFY_IS_APPROX(t1*v1, t0*v1);
t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
t1.setIdentity(); t1.scale(v0).rotate(q1);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
// More transform constructors, operator=, operator*=
Matrix3 mat3 = Matrix3::Random();
Matrix4 mat4;
mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose();
Transform3 tmat3(mat3), tmat4(mat4);
tmat4.matrix()(3,3) = Scalar(1);
VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
Scalar a3 = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
Vector3 v3 = Vector3::Random().normalized();
AngleAxisx aa3(a3, v3);
Transform3 t3(aa3);
Transform3 t4;
t4 = aa3;
VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
t4.rotate(AngleAxisx(-a3,v3));
VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
t4 *= aa3;
VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
v3 = Vector3::Random();
Translation3 tv3(v3);
Transform3 t5(tv3);
t4 = tv3;
VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
t4.translate(-v3);
VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
t4 *= tv3;
VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
Scaling3 sv3(v3);
Transform3 t6(sv3);
t4 = sv3;
VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
t4.scale(v3.cwise().inverse());
VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
t4 *= sv3;
VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
// matrix * transform
VERIFY_IS_APPROX(Transform3(t3.matrix()*t4).matrix(), Transform3(t3*t4).matrix());
// chained Transform product
VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());
// check that Transform product doesn't have aliasing problems
t5 = t4;
t5 = t5*t5;
VERIFY_IS_APPROX(t5, t4*t4);
// 2D transformation
Transform2 t20, t21;
Vector2 v20 = Vector2::Random();
Vector2 v21 = Vector2::Random();
for (int k=0; k<2; ++k)
if (ei_abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3);
t21.setIdentity();
t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
t21.pretranslate(v20).scale(v21).matrix());
t21.setIdentity();
t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
* (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
// Transform - new API
// 3D
t0.setIdentity();
t0.rotate(q1).scale(v0).translate(v0);
// mat * scaling and mat * translation
t1 = (Matrix3(q1) * Scaling3(v0)) * Translation3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// mat * transformation and scaling * translation
t1 = Matrix3(q1) * (Scaling3(v0) * Translation3(v0));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity();
t0.prerotate(q1).prescale(v0).pretranslate(v0);
// translation * scaling and transformation * mat
t1 = (Translation3(v0) * Scaling3(v0)) * Matrix3(q1);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// scaling * mat and translation * mat
t1 = Translation3(v0) * (Scaling3(v0) * Matrix3(q1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity();
t0.scale(v0).translate(v0).rotate(q1);
// translation * mat and scaling * transformation
t1 = Scaling3(v0) * (Translation3(v0) * Matrix3(q1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// transformation * scaling
t0.scale(v0);
t1 = t1 * Scaling3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// transformation * translation
t0.translate(v0);
t1 = t1 * Translation3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// translation * transformation
t0.pretranslate(v0);
t1 = Translation3(v0) * t1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// transform * quaternion
t0.rotate(q1);
t1 = t1 * q1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// translation * quaternion
t0.translate(v1).rotate(q1);
t1 = t1 * (Translation3(v1) * q1);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// scaling * quaternion
t0.scale(v1).rotate(q1);
t1 = t1 * (Scaling3(v1) * q1);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// quaternion * transform
t0.prerotate(q1);
t1 = q1 * t1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// quaternion * translation
t0.rotate(q1).translate(v1);
t1 = t1 * (q1 * Translation3(v1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// quaternion * scaling
t0.rotate(q1).scale(v1);
t1 = t1 * (q1 * Scaling3(v1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// translation * vector
t0.setIdentity();
t0.translate(v0);
VERIFY_IS_APPROX(t0 * v1, Translation3(v0) * v1);
// scaling * vector
t0.setIdentity();
t0.scale(v0);
VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1);
// test transform inversion
t0.setIdentity();
t0.translate(v0);
t0.linear().setRandom();
VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse());
t0.setIdentity();
t0.translate(v0).rotate(q1);
VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse());
// test extract rotation and scaling
t0.setIdentity();
t0.translate(v0).rotate(q1).scale(v1);
VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1);
Matrix3 mat_rotation, mat_scaling;
t0.setIdentity();
t0.translate(v0).rotate(q1).scale(v1);
t0.computeRotationScaling(&mat_rotation, &mat_scaling);
VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
t0.computeScalingRotation(&mat_scaling, &mat_rotation);
VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
// test casting
eigen2_Transform<float,3> t1f = t1.template cast<float>();
VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
eigen2_Transform<double,3> t1d = t1.template cast<double>();
VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
Translation3 tr1(v0);
eigen2_Translation<float,3> tr1f = tr1.template cast<float>();
VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
eigen2_Translation<double,3> tr1d = tr1.template cast<double>();
VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
Scaling3 sc1(v0);
eigen2_Scaling<float,3> sc1f = sc1.template cast<float>();
VERIFY_IS_APPROX(sc1f.template cast<Scalar>(),sc1);
eigen2_Scaling<double,3> sc1d = sc1.template cast<double>();
VERIFY_IS_APPROX(sc1d.template cast<Scalar>(),sc1);
eigen2_Quaternion<float> q1f = q1.template cast<float>();
VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
eigen2_Quaternion<double> q1d = q1.template cast<double>();
VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
eigen2_AngleAxis<float> aa1f = aa1.template cast<float>();
VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
eigen2_AngleAxis<double> aa1d = aa1.template cast<double>();
VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
eigen2_Rotation2D<Scalar> r2d1(ei_random<Scalar>());
eigen2_Rotation2D<float> r2d1f = r2d1.template cast<float>();
VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
eigen2_Rotation2D<double> r2d1d = r2d1.template cast<double>();
VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
m = q1;
// m.col(1) = Vector3(0,ei_random<Scalar>(),ei_random<Scalar>()).normalized();
// m.col(0) = Vector3(-1,0,0).normalized();
// m.col(2) = m.col(0).cross(m.col(1));
#define VERIFY_EULER(I,J,K, X,Y,Z) { \
Vector3 ea = m.eulerAngles(I,J,K); \
Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \
VERIFY_IS_APPROX(m, Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \
}
VERIFY_EULER(0,1,2, X,Y,Z);
VERIFY_EULER(0,1,0, X,Y,X);
VERIFY_EULER(0,2,1, X,Z,Y);
VERIFY_EULER(0,2,0, X,Z,X);
VERIFY_EULER(1,2,0, Y,Z,X);
VERIFY_EULER(1,2,1, Y,Z,Y);
VERIFY_EULER(1,0,2, Y,X,Z);
VERIFY_EULER(1,0,1, Y,X,Y);
VERIFY_EULER(2,0,1, Z,X,Y);
VERIFY_EULER(2,0,2, Z,X,Z);
VERIFY_EULER(2,1,0, Z,Y,X);
VERIFY_EULER(2,1,2, Z,Y,Z);
// colwise/rowwise cross product
mat3.setRandom();
Vector3 vec3 = Vector3::Random();
Matrix3 mcross;
int i = ei_random<int>(0,2);
mcross = mat3.colwise().cross(vec3);
VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3));
mcross = mat3.rowwise().cross(vec3);
VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3));
}
void test_eigen2_geometry_with_eigen2_prefix()
{
std::cout << "eigen2 support: " << EIGEN2_SUPPORT_STAGE << std::endl;
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( geometry<float>() );
CALL_SUBTEST_2( geometry<double>() );
}
}