mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
Merge.
This commit is contained in:
commit
e6f0cd7121
@ -178,9 +178,9 @@ class MatrixFunction<MatrixType, 1>
|
||||
*
|
||||
* This is morally a \c static \c const \c Scalar, but only
|
||||
* integers can be static constant class members in C++. The
|
||||
* separation constant is set to 0.01, a value taken from the
|
||||
* separation constant is set to 0.1, a value taken from the
|
||||
* paper by Davies and Higham. */
|
||||
static const RealScalar separation() { return static_cast<RealScalar>(0.01); }
|
||||
static const RealScalar separation() { return static_cast<RealScalar>(0.1); }
|
||||
};
|
||||
|
||||
/** \brief Constructor.
|
||||
@ -492,14 +492,12 @@ typename MatrixFunction<MatrixType,1>::DynMatrixType MatrixFunction<MatrixType,1
|
||||
template<typename Derived> class MatrixFunctionReturnValue
|
||||
: public ReturnByValue<MatrixFunctionReturnValue<Derived> >
|
||||
{
|
||||
private:
|
||||
public:
|
||||
|
||||
typedef typename ei_traits<Derived>::Scalar Scalar;
|
||||
typedef typename ei_stem_function<Scalar>::type StemFunction;
|
||||
|
||||
public:
|
||||
|
||||
/** \brief Constructor.
|
||||
/** \brief Constructor.
|
||||
*
|
||||
* \param[in] A %Matrix (expression) forming the argument of the
|
||||
* matrix function.
|
||||
|
@ -109,11 +109,10 @@ template<typename MatrixType>
|
||||
void testHyperbolicFunctions(const MatrixType& A)
|
||||
{
|
||||
for (int i = 0; i < g_repeat; i++) {
|
||||
MatrixType sinhA = ei_matrix_sinh(A);
|
||||
MatrixType coshA = ei_matrix_cosh(A);
|
||||
MatrixType expA = ei_matrix_exponential(A);
|
||||
VERIFY_IS_APPROX(sinhA, (expA - expA.inverse())/2);
|
||||
VERIFY_IS_APPROX(coshA, (expA + expA.inverse())/2);
|
||||
MatrixType expmA = ei_matrix_exponential(-A);
|
||||
VERIFY_IS_APPROX(ei_matrix_sinh(A), (expA - expmA) / 2);
|
||||
VERIFY_IS_APPROX(ei_matrix_cosh(A), (expA + expmA) / 2);
|
||||
}
|
||||
}
|
||||
|
||||
@ -134,14 +133,15 @@ void testGonioFunctions(const MatrixType& A)
|
||||
ComplexMatrix Ac = A.template cast<ComplexScalar>();
|
||||
|
||||
ComplexMatrix exp_iA = ei_matrix_exponential(imagUnit * Ac);
|
||||
ComplexMatrix exp_miA = ei_matrix_exponential(-imagUnit * Ac);
|
||||
|
||||
MatrixType sinA = ei_matrix_sin(A);
|
||||
ComplexMatrix sinAc = sinA.template cast<ComplexScalar>();
|
||||
VERIFY_IS_APPROX(sinAc, (exp_iA - exp_iA.inverse()) / (two*imagUnit));
|
||||
VERIFY_IS_APPROX(sinAc, (exp_iA - exp_miA) / (two*imagUnit));
|
||||
|
||||
MatrixType cosA = ei_matrix_cos(A);
|
||||
ComplexMatrix cosAc = cosA.template cast<ComplexScalar>();
|
||||
VERIFY_IS_APPROX(cosAc, (exp_iA + exp_iA.inverse()) / 2);
|
||||
VERIFY_IS_APPROX(cosAc, (exp_iA + exp_miA) / 2);
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user