mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-13 18:37:27 +08:00
bug #1652: implements a much more accurate version of vectorized sin/cos. This new version achieve same speed for SSE/AVX, and is slightly faster with FMA. Guarantees are as follows:
- no FMA: 1ULP up to 3pi, 2ULP up to sin(25966) and cos(18838), fallback to std::sin/cos for larger inputs - FMA: 1ULP up to sin(117435.992) and cos(71476.0625), fallback to std::sin/cos for larger inputs
This commit is contained in:
parent
e70ffef967
commit
e6b217b8dd
@ -393,18 +393,39 @@ typename conditional<(unpacket_traits<Packet>::size%8)==0,typename unpacket_trai
|
||||
predux_half_dowto4(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
/** \internal \returns the product of the elements of \a a*/
|
||||
/** \internal \returns the product of the elements of \a a */
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_mul(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
/** \internal \returns the min of the elements of \a a*/
|
||||
/** \internal \returns the min of the elements of \a a */
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
/** \internal \returns the max of the elements of \a a*/
|
||||
/** \internal \returns the max of the elements of \a a */
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_max(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
/** \internal \returns true if all coeffs of \a a means "true"
|
||||
* It is supposed to be called on values returned by pcmp_*.
|
||||
*/
|
||||
// not needed yet
|
||||
// template<typename Packet> EIGEN_DEVICE_FUNC inline bool predux_all(const Packet& a)
|
||||
// { return bool(a); }
|
||||
|
||||
/** \internal \returns true if any coeffs of \a a means "true"
|
||||
* It is supposed to be called on values returned by pcmp_*.
|
||||
*/
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline bool predux_any(const Packet& a)
|
||||
{
|
||||
// Dirty but generic implementation where "true" is assumed to be non 0 and all the sames.
|
||||
// It is expected that "true" is either:
|
||||
// - Scalar(1)
|
||||
// - bits full of ones (NaN for floats),
|
||||
// - or first bit equals to 1 (1 for ints, smallest denormal for floats).
|
||||
// For all these cases, taking the sum is just fine, and this boils down to a no-op for scalars.
|
||||
return bool(predux(a));
|
||||
}
|
||||
|
||||
/** \internal \returns the reversed elements of \a a*/
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet preverse(const Packet& a)
|
||||
{ return a; }
|
||||
|
@ -575,6 +575,16 @@ template<> EIGEN_STRONG_INLINE double predux_max<Packet4d>(const Packet4d& a)
|
||||
return pfirst(_mm256_max_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1)));
|
||||
}
|
||||
|
||||
// not needed yet
|
||||
// template<> EIGEN_STRONG_INLINE bool predux_all(const Packet8f& x)
|
||||
// {
|
||||
// return _mm256_movemask_ps(x)==0xFF;
|
||||
// }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE bool predux_any(const Packet8f& x)
|
||||
{
|
||||
return _mm256_movemask_ps(x)!=0;
|
||||
}
|
||||
|
||||
template<int Offset>
|
||||
struct palign_impl<Offset,Packet8f>
|
||||
|
@ -269,88 +269,118 @@ EIGEN_UNUSED
|
||||
Packet psincos_float(const Packet& _x)
|
||||
{
|
||||
typedef typename unpacket_traits<Packet>::integer_packet PacketI;
|
||||
const Packet cst_1 = pset1<Packet>(1.0f);
|
||||
const Packet cst_half = pset1<Packet>(0.5f);
|
||||
|
||||
const PacketI csti_1 = pset1<PacketI>(1);
|
||||
const PacketI csti_not1 = pset1<PacketI>(~1);
|
||||
const PacketI csti_2 = pset1<PacketI>(2);
|
||||
const PacketI csti_3 = pset1<PacketI>(3);
|
||||
|
||||
const Packet cst_sign_mask = pset1frombits<Packet>(0x80000000u);
|
||||
|
||||
const Packet cst_minus_cephes_DP1 = pset1<Packet>(-0.78515625f);
|
||||
const Packet cst_minus_cephes_DP2 = pset1<Packet>(-2.4187564849853515625e-4f);
|
||||
const Packet cst_minus_cephes_DP3 = pset1<Packet>(-3.77489497744594108e-8f);
|
||||
const Packet cst_sincof_p0 = pset1<Packet>(-1.9515295891E-4f);
|
||||
const Packet cst_sincof_p1 = pset1<Packet>( 8.3321608736E-3f);
|
||||
const Packet cst_sincof_p2 = pset1<Packet>(-1.6666654611E-1f);
|
||||
const Packet cst_coscof_p0 = pset1<Packet>( 2.443315711809948E-005f);
|
||||
const Packet cst_coscof_p1 = pset1<Packet>(-1.388731625493765E-003f);
|
||||
const Packet cst_coscof_p2 = pset1<Packet>( 4.166664568298827E-002f);
|
||||
const Packet cst_cephes_FOPI = pset1<Packet>( 1.27323954473516f); // 4 / M_PI
|
||||
const Packet cst_2oPI = pset1<Packet>(0.636619746685028076171875f); // 2/PI
|
||||
const Packet cst_rounding_magic = pset1<Packet>(12582912); // 2^23 for rounding
|
||||
const PacketI csti_1 = pset1<PacketI>(1);
|
||||
const Packet cst_sign_mask = pset1frombits<Packet>(0x80000000u);
|
||||
|
||||
Packet x = pabs(_x);
|
||||
|
||||
// Scale x by 4/Pi to find x's octant.
|
||||
Packet y = pmul(x, cst_cephes_FOPI);
|
||||
// Scale x by 2/Pi to find x's octant.
|
||||
Packet y = pmul(x, cst_2oPI);
|
||||
|
||||
// Get the octant. We'll reduce x by this number of octants or by one more than it.
|
||||
PacketI y_int = pcast<Packet,PacketI>(y);
|
||||
// x's from even-numbered octants will translate to octant 0: [0, +Pi/4].
|
||||
// x's from odd-numbered octants will translate to octant -1: [-Pi/4, 0].
|
||||
// Adjustment for odd-numbered octants: octant = (octant + 1) & (~1).
|
||||
PacketI y_int1 = pand(padd(y_int, csti_1), csti_not1); // could be pbitclear<0>(...)
|
||||
y = pcast<PacketI,Packet>(y_int1);
|
||||
// Rounding trick:
|
||||
Packet y_round = padd(y, cst_rounding_magic);
|
||||
PacketI y_int = preinterpret<PacketI>(y_round); // last 23 digits represent integer (if abs(x)<2^24)
|
||||
y = psub(y_round, cst_rounding_magic); // nearest integer to x*4/pi
|
||||
|
||||
// Compute the sign to apply to the polynomial.
|
||||
// sign = third_bit(y_int1) xor signbit(_x)
|
||||
Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(pshiftleft<29>(y_int1)))
|
||||
: preinterpret<Packet>(pshiftleft<29>(padd(y_int1,csti_3)));
|
||||
// sin: sign = second_bit(y_int) xor signbit(_x)
|
||||
// cos: sign = second_bit(y_int+1)
|
||||
Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(pshiftleft<30>(y_int)))
|
||||
: preinterpret<Packet>(pshiftleft<30>(padd(y_int,csti_1)));
|
||||
sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit
|
||||
|
||||
// Get the polynomial selection mask from the second bit of y_int1
|
||||
// Get the polynomial selection mask from the second bit of y_int
|
||||
// We'll calculate both (sin and cos) polynomials and then select from the two.
|
||||
Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int1, csti_2), pzero(y_int1)));
|
||||
Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int, csti_1), pzero(y_int)));
|
||||
|
||||
// Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4.
|
||||
// The magic pass: "Extended precision modular arithmetic"
|
||||
// x = ((x - y * DP1) - y * DP2) - y * DP3
|
||||
x = pmadd(y, cst_minus_cephes_DP1, x);
|
||||
x = pmadd(y, cst_minus_cephes_DP2, x);
|
||||
x = pmadd(y, cst_minus_cephes_DP3, x);
|
||||
// Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4
|
||||
// using "Extended precision modular arithmetic"
|
||||
#if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD)
|
||||
// This version requires true FMA for high accuracy
|
||||
// It provides a max error of 1ULP up to (with absolute_error < 5.9605e-08):
|
||||
const float huge_th = ComputeSine ? 117435.992f : 71476.0625f;
|
||||
x = pmadd(y, pset1<Packet>(-1.57079601287841796875f), x);
|
||||
x = pmadd(y, pset1<Packet>(-3.1391647326017846353352069854736328125e-07f), x);
|
||||
x = pmadd(y, pset1<Packet>(-5.390302529957764765544681040410068817436695098876953125e-15f), x);
|
||||
#else
|
||||
// Without true FMA, the previous set of coefficients maintain 1ULP accuracy
|
||||
// up to x<15.7 (for sin), but accuracy is immediately lost for x>15.7.
|
||||
// We thus use one more iteration to maintain 2ULPs up to reasonably large inputs.
|
||||
|
||||
// The following set of coefficients maintain 1ULP up to 9.43 and 14.16 for sin and cos respectively.
|
||||
// and 2 ULP up to:
|
||||
const float huge_th = ComputeSine ? 25966.f : 18838.f;
|
||||
x = pmadd(y, pset1<Packet>(-1.5703125), x); // = 0xbfc90000
|
||||
x = pmadd(y, pset1<Packet>(-0.000483989715576171875), x); // = 0xb9fdc000
|
||||
x = pmadd(y, pset1<Packet>(1.62865035235881805419921875e-07), x); // = 0x342ee000
|
||||
x = pmadd(y, pset1<Packet>(5.5644315544167710640977020375430583953857421875e-11), x); // = 0x2e74b9ee
|
||||
|
||||
// For the record, the following set of coefficients maintain 2ULP up
|
||||
// to a slightly larger range:
|
||||
// const float huge_th = ComputeSine ? 51981.f : 39086.125f;
|
||||
// but it slightly fails to maintain 1ULP for two values of sin below pi.
|
||||
// x = pmadd(y, pset1<Packet>(-3.140625/2.), x);
|
||||
// x = pmadd(y, pset1<Packet>(-0.00048351287841796875), x);
|
||||
// x = pmadd(y, pset1<Packet>(-3.13855707645416259765625e-07), x);
|
||||
// x = pmadd(y, pset1<Packet>(-6.0771006282767103812147979624569416046142578125e-11), x);
|
||||
|
||||
// For the record, with only 3 iterations it is possible to maintain
|
||||
// 1 ULP up to 3PI (maybe more) and 2ULP up to 255.
|
||||
// The coefficients are: 0xbfc90f80, 0xb7354480, 0x2e74b9ee
|
||||
#endif
|
||||
|
||||
Packet huge_mask = pcmp_le(pset1<Packet>(huge_th),pabs(_x));
|
||||
Packet huge_vals;
|
||||
if(predux_any(huge_mask))
|
||||
{
|
||||
const int PacketSize = unpacket_traits<Packet>::size;
|
||||
#if EIGEN_HAS_CXX11
|
||||
alignas(Packet) float vals[PacketSize];
|
||||
#else
|
||||
EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float vals[PacketSize];
|
||||
#endif
|
||||
pstoreu(vals, _x);
|
||||
for(int k=0; k<PacketSize;++k) {
|
||||
float val = vals[k];
|
||||
if(numext::abs(val)>=huge_th) {
|
||||
vals[k] = ComputeSine ? std::sin(val) : std::cos(val);
|
||||
}
|
||||
}
|
||||
huge_vals = ploadu<Packet>(vals);
|
||||
}
|
||||
|
||||
Packet x2 = pmul(x,x);
|
||||
|
||||
// Evaluate the cos(x) polynomial. (0 <= x <= Pi/4)
|
||||
Packet y1 = cst_coscof_p0;
|
||||
y1 = pmadd(y1, x2, cst_coscof_p1);
|
||||
y1 = pmadd(y1, x2, cst_coscof_p2);
|
||||
y1 = pmul(y1, x2);
|
||||
y1 = pmul(y1, x2);
|
||||
y1 = psub(y1, pmul(x2, cst_half));
|
||||
y1 = padd(y1, cst_1);
|
||||
// Evaluate the cos(x) polynomial. (-Pi/4 <= x <= Pi/4)
|
||||
Packet y1 = pset1<Packet>(2.4372266125283204019069671630859375e-05f);
|
||||
y1 = pmadd(y1, x2, pset1<Packet>(-0.00138865201734006404876708984375f ));
|
||||
y1 = pmadd(y1, x2, pset1<Packet>(0.041666619479656219482421875f ));
|
||||
y1 = pmadd(y1, x2, pset1<Packet>(-0.5f));
|
||||
y1 = pmadd(y1, x2, pset1<Packet>(1.f));
|
||||
|
||||
// Evaluate the sin(x) polynomial. (Pi/4 <= x <= 0)
|
||||
Packet y2 = cst_sincof_p0;
|
||||
y2 = pmadd(y2, x2, cst_sincof_p1);
|
||||
y2 = pmadd(y2, x2, cst_sincof_p2);
|
||||
// Evaluate the sin(x) polynomial. (Pi/4 <= x <= Pi/4)
|
||||
// octave/matlab code to compute those coefficients:
|
||||
// x = (0:0.0001:pi/4)';
|
||||
// A = [x.^3 x.^5 x.^7];
|
||||
// w = ((1.-(x/(pi/4)).^2).^5)*2000+1; # weights trading relative accuracy
|
||||
// c = (A'*diag(w)*A)\(A'*diag(w)*(sin(x)-x)); # weighted LS, linear coeff forced to 1
|
||||
// printf('%.64f\n %.64f\n%.64f\n', c(3), c(2), c(1))
|
||||
//
|
||||
Packet y2 = pset1<Packet>(-0.0001959234114083702898469196984621021329076029360294342041015625f);
|
||||
y2 = pmadd(y2, x2, pset1<Packet>( 0.0083326873655616851693794799871284340042620897293090820312500000f));
|
||||
y2 = pmadd(y2, x2, pset1<Packet>(-0.1666666203982298255503735617821803316473960876464843750000000000f));
|
||||
y2 = pmul(y2, x2);
|
||||
y2 = pmadd(y2, x, x);
|
||||
|
||||
// Select the correct result from the two polynoms.
|
||||
// Select the correct result from the two polynomials.
|
||||
y = ComputeSine ? pselect(poly_mask,y2,y1)
|
||||
: pselect(poly_mask,y1,y2);
|
||||
|
||||
// For very large arguments the the reduction to the [-Pi/4,+Pi/4] range
|
||||
// does not work thus leading to sine/cosine out of the [-1:1] range.
|
||||
// Since computing the sine/cosine for very large entry entries makes little
|
||||
// sense in term of accuracy, we simply clamp to [-1,1]:
|
||||
y = pmin(y,pset1<Packet>( 1.f));
|
||||
y = pmax(y,pset1<Packet>(-1.f));
|
||||
|
||||
// Update the sign
|
||||
return pxor(y, sign_bit);
|
||||
// Update the sign and filter huge inputs
|
||||
return pselect(huge_mask, huge_vals, pxor(y, sign_bit));
|
||||
}
|
||||
|
||||
template<typename Packet>
|
||||
|
@ -812,6 +812,17 @@ template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
|
||||
#endif // EIGEN_VECTORIZE_SSE4_1
|
||||
}
|
||||
|
||||
// not needed yet
|
||||
// template<> EIGEN_STRONG_INLINE bool predux_all(const Packet4f& x)
|
||||
// {
|
||||
// return _mm_movemask_ps(x) == 0xF;
|
||||
// }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE bool predux_any(const Packet4f& x)
|
||||
{
|
||||
return _mm_movemask_ps(x) != 0x0;
|
||||
}
|
||||
|
||||
#if EIGEN_COMP_GNUC
|
||||
// template <> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c)
|
||||
// {
|
||||
|
@ -568,17 +568,22 @@ template<typename Scalar,typename Packet> void packetmath_real()
|
||||
if(PacketTraits::HasCos)
|
||||
{
|
||||
packet_helper<PacketTraits::HasCos,Packet> h;
|
||||
for(Scalar k = 1; k<Scalar(1000)/std::numeric_limits<Scalar>::epsilon(); k*=2) {
|
||||
data1[0] = k*Scalar(EIGEN_PI) * internal::random<Scalar>(0.8,1.2);
|
||||
data1[1] = (k+1)*Scalar(EIGEN_PI) * internal::random<Scalar>(0.8,1.2);
|
||||
h.store(data2, internal::pcos(h.load(data1)));
|
||||
VERIFY(data2[0]<=Scalar(1.) && data2[0]>=Scalar(-1.));
|
||||
VERIFY(data2[1]<=Scalar(1.) && data2[1]>=Scalar(-1.));
|
||||
data1[0] = (2*k+1)*Scalar(EIGEN_PI)/2 * internal::random<Scalar>(0.8,1.2);
|
||||
data1[1] = (2*k+3)*Scalar(EIGEN_PI)/2 * internal::random<Scalar>(0.8,1.2);
|
||||
h.store(data2, internal::psin(h.load(data1)));
|
||||
VERIFY(data2[0]<=Scalar(1.) && data2[0]>=Scalar(-1.));
|
||||
VERIFY(data2[1]<=Scalar(1.) && data2[1]>=Scalar(-1.));
|
||||
for(Scalar k = 1; k<Scalar(10000)/std::numeric_limits<Scalar>::epsilon(); k*=2)
|
||||
{
|
||||
for(int k1=0;k1<=1; ++k1)
|
||||
{
|
||||
data1[0] = (2*k+k1 )*Scalar(EIGEN_PI)/2 * internal::random<Scalar>(0.8,1.2);
|
||||
data1[1] = (2*k+2+k1)*Scalar(EIGEN_PI)/2 * internal::random<Scalar>(0.8,1.2);
|
||||
h.store(data2, internal::pcos(h.load(data1)));
|
||||
h.store(data2+PacketSize, internal::psin(h.load(data1)));
|
||||
VERIFY(data2[0]<=Scalar(1.) && data2[0]>=Scalar(-1.));
|
||||
VERIFY(data2[1]<=Scalar(1.) && data2[1]>=Scalar(-1.));
|
||||
VERIFY(data2[PacketSize+0]<=Scalar(1.) && data2[PacketSize+0]>=Scalar(-1.));
|
||||
VERIFY(data2[PacketSize+1]<=Scalar(1.) && data2[PacketSize+1]>=Scalar(-1.));
|
||||
|
||||
VERIFY_IS_APPROX(numext::abs2(data2[0])+numext::abs2(data2[PacketSize+0]), Scalar(1));
|
||||
VERIFY_IS_APPROX(numext::abs2(data2[1])+numext::abs2(data2[PacketSize+1]), Scalar(1));
|
||||
}
|
||||
}
|
||||
|
||||
data1[0] = std::numeric_limits<Scalar>::infinity();
|
||||
@ -596,6 +601,12 @@ template<typename Scalar,typename Packet> void packetmath_real()
|
||||
VERIFY((numext::isnan)(data2[0]));
|
||||
h.store(data2, internal::pcos(h.load(data1)));
|
||||
VERIFY((numext::isnan)(data2[0]));
|
||||
|
||||
data1[0] = -Scalar(0.);
|
||||
h.store(data2, internal::psin(h.load(data1)));
|
||||
VERIFY( internal::biteq(data2[0], data1[0]) );
|
||||
h.store(data2, internal::pcos(h.load(data1)));
|
||||
VERIFY_IS_EQUAL(data2[0], Scalar(1));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -633,6 +644,29 @@ template<typename Scalar,typename Packet> void packetmath_notcomplex()
|
||||
ref[i] = data1[0]+Scalar(i);
|
||||
internal::pstore(data2, internal::plset<Packet>(data1[0]));
|
||||
VERIFY(areApprox(ref, data2, PacketSize) && "internal::plset");
|
||||
|
||||
{
|
||||
unsigned char* data1_bits = reinterpret_cast<unsigned char*>(data1);
|
||||
// predux_all - not needed yet
|
||||
// for (unsigned int i=0; i<PacketSize*sizeof(Scalar); ++i) data1_bits[i] = 0xff;
|
||||
// VERIFY(internal::predux_all(internal::pload<Packet>(data1)) && "internal::predux_all(1111)");
|
||||
// for(int k=0; k<PacketSize; ++k)
|
||||
// {
|
||||
// for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0x0;
|
||||
// VERIFY( (!internal::predux_all(internal::pload<Packet>(data1))) && "internal::predux_all(0101)");
|
||||
// for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0xff;
|
||||
// }
|
||||
|
||||
// predux_any
|
||||
for (unsigned int i=0; i<PacketSize*sizeof(Scalar); ++i) data1_bits[i] = 0x0;
|
||||
VERIFY( (!internal::predux_any(internal::pload<Packet>(data1))) && "internal::predux_any(0000)");
|
||||
for(int k=0; k<PacketSize; ++k)
|
||||
{
|
||||
for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0xff;
|
||||
VERIFY( internal::predux_any(internal::pload<Packet>(data1)) && "internal::predux_any(0101)");
|
||||
for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0x00;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Scalar,typename Packet,bool ConjLhs,bool ConjRhs> void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval)
|
||||
|
Loading…
x
Reference in New Issue
Block a user