LDLT: make it honors the Lower/Upper directive and make it works inplace

This commit is contained in:
Gael Guennebaud 2010-06-03 22:22:14 +02:00
parent 4159db979d
commit e64460d5d0
5 changed files with 160 additions and 87 deletions

View File

@ -27,6 +27,8 @@
#ifndef EIGEN_LDLT_H #ifndef EIGEN_LDLT_H
#define EIGEN_LDLT_H #define EIGEN_LDLT_H
template<typename MatrixType, int UpLo> struct LDLT_Traits;
/** \ingroup cholesky_Module /** \ingroup cholesky_Module
* *
* \class LDLT * \class LDLT
@ -52,7 +54,7 @@
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore, * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values. * the strict lower part does not have to store correct values.
*/ */
template<typename _MatrixType> class LDLT template<typename _MatrixType, int _UpLo> class LDLT
{ {
public: public:
typedef _MatrixType MatrixType; typedef _MatrixType MatrixType;
@ -61,7 +63,8 @@ template<typename _MatrixType> class LDLT
ColsAtCompileTime = MatrixType::ColsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options, Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
UpLo = _UpLo
}; };
typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
@ -69,6 +72,8 @@ template<typename _MatrixType> class LDLT
typedef typename ei_plain_col_type<MatrixType, Index>::type IntColVectorType; typedef typename ei_plain_col_type<MatrixType, Index>::type IntColVectorType;
typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType; typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
typedef LDLT_Traits<MatrixType,UpLo> Traits;
/** \brief Default Constructor. /** \brief Default Constructor.
* *
* The default constructor is useful in cases in which the user intends to * The default constructor is useful in cases in which the user intends to
@ -100,11 +105,18 @@ template<typename _MatrixType> class LDLT
compute(matrix); compute(matrix);
} }
/** \returns an expression of the lower triangular matrix L */ /** \returns a view of the upper triangular matrix U */
inline TriangularView<MatrixType, UnitLower> matrixL(void) const inline typename Traits::MatrixU matrixU() const
{ {
ei_assert(m_isInitialized && "LDLT is not initialized."); ei_assert(m_isInitialized && "LDLT is not initialized.");
return m_matrix; return Traits::getU(m_matrix);
}
/** \returns a view of the lower triangular matrix L */
inline typename Traits::MatrixL matrixL() const
{
ei_assert(m_isInitialized && "LDLT is not initialized.");
return Traits::getL(m_matrix);
} }
/** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed, /** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
@ -186,14 +198,115 @@ template<typename _MatrixType> class LDLT
IntColVectorType m_p; IntColVectorType m_p;
IntColVectorType m_transpositions; // FIXME do we really need to store permanently the transpositions? IntColVectorType m_transpositions; // FIXME do we really need to store permanently the transpositions?
TmpMatrixType m_temporary; TmpMatrixType m_temporary;
Index m_sign; int m_sign;
bool m_isInitialized; bool m_isInitialized;
}; };
template<int UpLo> struct ei_ldlt_inplace;
template<> struct ei_ldlt_inplace<Lower>
{
template<typename MatrixType, typename Transpositions, typename Workspace>
static bool unblocked(MatrixType& mat, Transpositions& transpositions, Workspace& temp, int* sign=0)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
ei_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
if (size <= 1)
{
transpositions.setZero();
if(sign)
*sign = ei_real(mat.coeff(0,0))>0 ? 1:-1;
return true;
}
RealScalar cutoff = 0, biggest_in_corner;
for (Index k = 0; k < size; ++k)
{
// Find largest diagonal element
Index index_of_biggest_in_corner;
biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
index_of_biggest_in_corner += k;
if(k == 0)
{
// The biggest overall is the point of reference to which further diagonals
// are compared; if any diagonal is negligible compared
// to the largest overall, the algorithm bails.
cutoff = ei_abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
if(sign)
*sign = ei_real(mat.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1;
}
// Finish early if the matrix is not full rank.
if(biggest_in_corner < cutoff)
{
for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i;
break;
}
transpositions.coeffRef(k) = index_of_biggest_in_corner;
if(k != index_of_biggest_in_corner)
{
mat.row(k).swap(mat.row(index_of_biggest_in_corner));
mat.col(k).swap(mat.col(index_of_biggest_in_corner));
}
Index rs = size - k - 1;
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
if(k>0)
{
temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint();
mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
if(rs>0)
A21.noalias() -= A20 * temp.head(k);
}
if((rs>0) && (ei_abs(mat.coeffRef(k,k)) > cutoff))
A21 /= mat.coeffRef(k,k);
}
return true;
}
};
template<> struct ei_ldlt_inplace<Upper>
{
template<typename MatrixType, typename Transpositions, typename Workspace>
static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, Transpositions& transpositions, Workspace& temp, int* sign=0)
{
Transpose<MatrixType> matt(mat);
return ei_ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
}
};
template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
{
typedef TriangularView<MatrixType, UnitLower> MatrixL;
typedef TriangularView<typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
inline static MatrixL getL(const MatrixType& m) { return m; }
inline static MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};
template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
{
typedef TriangularView<typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
typedef TriangularView<MatrixType, UnitUpper> MatrixU;
inline static MatrixL getL(const MatrixType& m) { return m.adjoint(); }
inline static MatrixU getU(const MatrixType& m) { return m; }
};
/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
*/ */
template<typename MatrixType> template<typename MatrixType, int _UpLo>
LDLT<MatrixType>& LDLT<MatrixType>::compute(const MatrixType& a) LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{ {
ei_assert(a.rows()==a.cols()); ei_assert(a.rows()==a.cols());
const Index size = a.rows(); const Index size = a.rows();
@ -203,69 +316,12 @@ LDLT<MatrixType>& LDLT<MatrixType>::compute(const MatrixType& a)
m_p.resize(size); m_p.resize(size);
m_transpositions.resize(size); m_transpositions.resize(size);
m_isInitialized = false; m_isInitialized = false;
if (size <= 1)
{
m_p.setZero();
m_transpositions.setZero();
m_sign = ei_real(a.coeff(0,0))>0 ? 1:-1;
m_isInitialized = true;
return *this;
}
RealScalar cutoff = 0, biggest_in_corner;
// By using a temporary, packet-aligned products are guarenteed. In the LLT
// case this is unnecessary because the diagonal is included and will always
// have optimal alignment.
m_temporary.resize(size); m_temporary.resize(size);
for (Index j = 0; j < size; ++j)
{
// Find largest diagonal element ei_ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, &m_sign);
Index index_of_biggest_in_corner;
biggest_in_corner = m_matrix.diagonal().tail(size-j).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
index_of_biggest_in_corner += j;
if(j == 0) if(size==0)
{ m_p.setZero();
// The biggest overall is the point of reference to which further diagonals
// are compared; if any diagonal is negligible compared
// to the largest overall, the algorithm bails.
cutoff = ei_abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
m_sign = ei_real(m_matrix.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1;
}
// Finish early if the matrix is not full rank.
if(biggest_in_corner < cutoff)
{
for(Index i = j; i < size; i++) m_transpositions.coeffRef(i) = i;
break;
}
m_transpositions.coeffRef(j) = index_of_biggest_in_corner;
if(j != index_of_biggest_in_corner)
{
m_matrix.row(j).swap(m_matrix.row(index_of_biggest_in_corner));
m_matrix.col(j).swap(m_matrix.col(index_of_biggest_in_corner));
}
Index rs = size - j - 1;
Block<MatrixType,Dynamic,1> A21(m_matrix,j+1,j,rs,1);
Block<MatrixType,1,Dynamic> A10(m_matrix,j,0,1,j);
Block<MatrixType,Dynamic,Dynamic> A20(m_matrix,j+1,0,rs,j);
if(j>0)
{
m_temporary.head(j) = m_matrix.diagonal().head(j).asDiagonal() * A10.adjoint();
m_matrix.coeffRef(j,j) -= (A10 * m_temporary.head(j)).value();
if(rs>0)
A21.noalias() -= A20 * m_temporary.head(j);
}
if((rs>0) && (ei_abs(m_matrix.coeffRef(j,j)) > cutoff))
A21 /= m_matrix.coeffRef(j,j);
}
// Reverse applied swaps to get P matrix. // Reverse applied swaps to get P matrix.
for(Index k = 0; k < size; ++k) m_p.coeffRef(k) = k; for(Index k = 0; k < size; ++k) m_p.coeffRef(k) = k;
@ -277,11 +333,12 @@ LDLT<MatrixType>& LDLT<MatrixType>::compute(const MatrixType& a)
return *this; return *this;
} }
template<typename _MatrixType, typename Rhs> template<typename _MatrixType, int _UpLo, typename Rhs>
struct ei_solve_retval<LDLT<_MatrixType>, Rhs> struct ei_solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
: ei_solve_retval_base<LDLT<_MatrixType>, Rhs> : ei_solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
{ {
EIGEN_MAKE_SOLVE_HELPERS(LDLT<_MatrixType>,Rhs) typedef LDLT<_MatrixType,_UpLo> LDLTType;
EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const template<typename Dest> void evalTo(Dest& dst) const
{ {
@ -301,9 +358,9 @@ struct ei_solve_retval<LDLT<_MatrixType>, Rhs>
* *
* \sa LDLT::solve(), MatrixBase::ldlt() * \sa LDLT::solve(), MatrixBase::ldlt()
*/ */
template<typename MatrixType> template<typename MatrixType,int _UpLo>
template<typename Derived> template<typename Derived>
bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{ {
ei_assert(m_isInitialized && "LDLT is not initialized."); ei_assert(m_isInitialized && "LDLT is not initialized.");
const Index size = m_matrix.rows(); const Index size = m_matrix.rows();
@ -314,13 +371,13 @@ bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
// y = L^-1 z // y = L^-1 z
//matrixL().solveInPlace(bAndX); //matrixL().solveInPlace(bAndX);
m_matrix.template triangularView<UnitLower>().solveInPlace(bAndX); matrixL().solveInPlace(bAndX);
// w = D^-1 y // w = D^-1 y
bAndX = m_matrix.diagonal().asDiagonal().inverse() * bAndX; bAndX = m_matrix.diagonal().asDiagonal().inverse() * bAndX;
// u = L^-T w // u = L^-T w
m_matrix.adjoint().template triangularView<UnitUpper>().solveInPlace(bAndX); matrixU().solveInPlace(bAndX);
// x = P^T u // x = P^T u
for (Index i = size-1; i >= 0; --i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i)); for (Index i = size-1; i >= 0; --i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i));
@ -331,8 +388,8 @@ bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
/** \returns the matrix represented by the decomposition, /** \returns the matrix represented by the decomposition,
* i.e., it returns the product: P^T L D L^* P. * i.e., it returns the product: P^T L D L^* P.
* This function is provided for debug purpose. */ * This function is provided for debug purpose. */
template<typename MatrixType> template<typename MatrixType, int _UpLo>
MatrixType LDLT<MatrixType>::reconstructedMatrix() const MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
{ {
ei_assert(m_isInitialized && "LDLT is not initialized."); ei_assert(m_isInitialized && "LDLT is not initialized.");
const Index size = m_matrix.rows(); const Index size = m_matrix.rows();
@ -342,7 +399,7 @@ MatrixType LDLT<MatrixType>::reconstructedMatrix() const
// PI // PI
for(Index i = 0; i < size; ++i) res.row(m_transpositions.coeff(i)).swap(res.row(i)); for(Index i = 0; i < size; ++i) res.row(m_transpositions.coeff(i)).swap(res.row(i));
// L^* P // L^* P
res = matrixL().adjoint() * res; res = matrixU() * res;
// D(L^*P) // D(L^*P)
res = vectorD().asDiagonal() * res; res = vectorD().asDiagonal() * res;
// L(DL^*P) // L(DL^*P)
@ -353,6 +410,16 @@ MatrixType LDLT<MatrixType>::reconstructedMatrix() const
return res; return res;
} }
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
*/
template<typename MatrixType, unsigned int UpLo>
inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::ldlt() const
{
return LDLT<PlainObject,UpLo>(m_matrix);
}
/** \cholesky_module /** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this * \returns the Cholesky decomposition with full pivoting without square root of \c *this
*/ */

View File

@ -162,7 +162,6 @@ template<typename _MatrixType, int _UpLo> class LLT
bool m_isInitialized; bool m_isInitialized;
}; };
// forward declaration (defined at the end of this file)
template<int UpLo> struct ei_llt_inplace; template<int UpLo> struct ei_llt_inplace;
template<> struct ei_llt_inplace<Lower> template<> struct ei_llt_inplace<Lower>

View File

@ -153,7 +153,7 @@ template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
/////////// Cholesky module /////////// /////////// Cholesky module ///////////
const LLT<PlainObject, UpLo> llt() const; const LLT<PlainObject, UpLo> llt() const;
const LDLT<PlainObject> ldlt() const; const LDLT<PlainObject, UpLo> ldlt() const;
/////////// Eigenvalue module /////////// /////////// Eigenvalue module ///////////

View File

@ -158,7 +158,7 @@ template<typename MatrixType> class FullPivHouseholderQR;
template<typename MatrixType> class SVD; template<typename MatrixType> class SVD;
template<typename MatrixType, unsigned int Options = 0> class JacobiSVD; template<typename MatrixType, unsigned int Options = 0> class JacobiSVD;
template<typename MatrixType, int UpLo = Lower> class LLT; template<typename MatrixType, int UpLo = Lower> class LLT;
template<typename MatrixType> class LDLT; template<typename MatrixType, int UpLo = Lower> class LDLT;
template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence; template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence;
template<typename Scalar> class PlanarRotation; template<typename Scalar> class PlanarRotation;

View File

@ -118,11 +118,18 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
} }
{ {
LDLT<SquareMatrixType> ldlt(symm); LDLT<SquareMatrixType,Lower> ldltlo(symm);
VERIFY_IS_APPROX(symm, ldlt.reconstructedMatrix()); VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix());
vecX = ldlt.solve(vecB); vecX = ldltlo.solve(vecB);
VERIFY_IS_APPROX(symm * vecX, vecB); VERIFY_IS_APPROX(symm * vecX, vecB);
matX = ldlt.solve(matB); matX = ldltlo.solve(matB);
VERIFY_IS_APPROX(symm * matX, matB);
LDLT<SquareMatrixType,Upper> ldltup(symm);
VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix());
vecX = ldltup.solve(vecB);
VERIFY_IS_APPROX(symm * vecX, vecB);
matX = ldltup.solve(matB);
VERIFY_IS_APPROX(symm * matX, matB); VERIFY_IS_APPROX(symm * matX, matB);
} }