2
0
mirror of https://gitlab.com/libeigen/eigen.git synced 2025-03-31 19:00:35 +08:00

* Quaternion: added dot product and angularDistance functions. The latter is

based on the former.
* opengl_demo: makes IcoSphere better (vertices are instanciated only once) and
               removed the generation of a big geometry for the fancy spheres...
This commit is contained in:
Gael Guennebaud 2008-09-11 11:19:34 +00:00
parent 5e9ee8863e
commit e5c50afed6
4 changed files with 156 additions and 119 deletions

@ -163,6 +163,15 @@ public:
*/
inline Scalar norm() const { return m_coeffs.norm(); }
/** \returns the dot product of \c *this and \a other
* Geometrically speaking, the dot product of two unit quaternions
* corresponds to the cosine of half the angle between the two rotations.
* \sa angularDistance()
*/
inline Scalar dot(const Quaternion& other) const { return m_coeffs.dot(other.m_coeffs); }
inline Scalar angularDistance(const Quaternion& other) const;
Matrix3 toRotationMatrix(void) const;
template<typename Derived1, typename Derived2>
@ -357,22 +366,28 @@ inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
}
/** \returns the angle (in radian) between two rotations
* \sa dot()
*/
template <typename Scalar>
inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const
{
double d = ei_abs(this->dot(other));
if (d>=1.0)
return 0;
return 2.0 * std::acos(d);
}
/** \returns the spherical linear interpolation between the two quaternions
* \c *this and \a other at the parameter \a t
*/
template <typename Scalar>
Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
{
// FIXME options for this function would be:
// 1 - Quaternion& fromSlerp(Scalar t, const Quaternion& q0, const Quaternion& q1);
// which set *this from the s-lerp and returns *this
// 2 - Quaternion slerp(Scalar t, const Quaternion& other) const
// which returns the s-lerp between this and other
// ??
static const Scalar one = Scalar(1) - precision<Scalar>();
Scalar d = m_coeffs.dot(other.m_coeffs);
Scalar d = this->dot(other);
Scalar absD = ei_abs(d);
if (d>=one)
if (absD>=one)
return *this;
// theta is the angle between the 2 quaternions

@ -25,6 +25,7 @@
#include "icosphere.h"
#include <GL/gl.h>
#include <map>
using namespace Eigen;
@ -74,24 +75,39 @@ const std::vector<int>& IcoSphere::indices(int level) const
void IcoSphere::_subdivide(void)
{
typedef unsigned long long Key;
std::map<Key,int> edgeMap;
const std::vector<int>& indices = *mIndices.back();
mIndices.push_back(new std::vector<int>);
std::vector<int>& refinedIndices = *mIndices.back();
int end = indices.size();
for (int i=0; i<end; i+=3)
{
int i0, i1, i2;
Vector3f v0 = mVertices[i0=indices[i+0]];
Vector3f v1 = mVertices[i1=indices[i+1]];
Vector3f v2 = mVertices[i2=indices[i+2]];
int start = mVertices.size();
mVertices.push_back( (v0+v1).normalized() );
mVertices.push_back( (v1+v2).normalized() );
mVertices.push_back( (v2+v0).normalized() );
refinedIndices.push_back(i0); refinedIndices.push_back(start+0); refinedIndices.push_back(start+2);
refinedIndices.push_back(i1); refinedIndices.push_back(start+1); refinedIndices.push_back(start+0);
refinedIndices.push_back(i2); refinedIndices.push_back(start+2); refinedIndices.push_back(start+1);
refinedIndices.push_back(start+0); refinedIndices.push_back(start+1); refinedIndices.push_back(start+2);
int ids0[3], // indices of outer vertices
ids1[3]; // indices of edge vertices
for (int k=0; k<3; ++k)
{
int k1 = (k+1)%3;
int e0 = indices[i+k];
int e1 = indices[i+k1];
ids0[k] = e0;
if (e1>e0)
std::swap(e0,e1);
Key edgeKey = Key(e0) | (Key(e1)<<32);
std::map<Key,int>::iterator it = edgeMap.find(edgeKey);
if (it==edgeMap.end())
{
ids1[k] = mVertices.size();
edgeMap[edgeKey] = ids1[k];
mVertices.push_back( (mVertices[e0]+mVertices[e1]).normalized() );
}
else
ids1[k] = it->second;
}
refinedIndices.push_back(ids0[0]); refinedIndices.push_back(ids1[0]); refinedIndices.push_back(ids1[2]);
refinedIndices.push_back(ids0[1]); refinedIndices.push_back(ids1[1]); refinedIndices.push_back(ids1[0]);
refinedIndices.push_back(ids0[2]); refinedIndices.push_back(ids1[2]); refinedIndices.push_back(ids1[1]);
refinedIndices.push_back(ids1[0]); refinedIndices.push_back(ids1[1]); refinedIndices.push_back(ids1[2]);
}
mListIds.push_back(0);
}

@ -41,6 +41,89 @@
using namespace Eigen;
class FancySpheres
{
public:
FancySpheres()
{
const int levels = 4;
const float scale = 0.33;
float radius = 100;
std::vector<int> parents;
// leval 0
mCenters.push_back(Vector3f::Zero());
parents.push_back(-1);
mRadii.push_back(radius);
// generate level 1 using icosphere vertices
radius *= 0.45;
{
float dist = mRadii[0]*0.9;
for (int i=0; i<12; ++i)
{
mCenters.push_back(mIcoSphere.vertices()[i] * dist);
mRadii.push_back(radius);
parents.push_back(0);
}
}
static const float angles [10] = {
0, 0,
M_PI, 0.*M_PI,
M_PI, 0.5*M_PI,
M_PI, 1.*M_PI,
M_PI, 1.5*M_PI
};
// generate other levels
int start = 1;
for (int l=1; l<levels; l++)
{
radius *= scale;
int end = mCenters.size();
for (int i=start; i<end; ++i)
{
Vector3f c = mCenters[i];
Vector3f ax0 = (c - mCenters[parents[i]]).normalized();
Vector3f ax1 = ax0.unitOrthogonal();
Quaternionf q;
q.setFromTwoVectors(Vector3f::UnitZ(), ax0);
Transform3f t = Translation3f(c) * q * Scaling3f(mRadii[i]+radius);
for (int j=0; j<5; ++j)
{
Vector3f newC = c + ( (AngleAxisf(angles[j*2+1], ax0)
* AngleAxisf(angles[j*2+0] * (l==1 ? 0.35 : 0.5), ax1)) * ax0)
* (mRadii[i] + radius*0.8);
mCenters.push_back(newC);
mRadii.push_back(radius);
parents.push_back(i);
}
}
start = end;
}
}
void draw()
{
int end = mCenters.size();
glEnable(GL_NORMALIZE);
for (int i=0; i<end; ++i)
{
Transform3f t = Translation3f(mCenters[i]) * Scaling3f(mRadii[i]);
gpu.pushMatrix(GL_MODELVIEW);
gpu.multMatrix(t.matrix(),GL_MODELVIEW);
mIcoSphere.draw(2);
gpu.popMatrix(GL_MODELVIEW);
}
glDisable(GL_NORMALIZE);
}
protected:
std::vector<Vector3f> mCenters;
std::vector<float> mRadii;
IcoSphere mIcoSphere;
};
// generic linear interpolation method
template<typename T> T lerp(float t, const T& a, const T& b)
@ -156,7 +239,8 @@ void RenderingWidget::grabFrame(void)
void RenderingWidget::drawScene()
{
float length = 50;
static FancySpheres sFancySpheres;
float length = 200;
gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitX(), Color(1,0,0,1));
gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitY(), Color(0,1,0,1));
gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitZ(), Color(0,0,1,1));
@ -183,13 +267,14 @@ void RenderingWidget::drawScene()
glEnable(GL_LIGHT1);
glColor3f(0.4, 0.7, 0.4);
glVertexPointer(3, GL_FLOAT, 0, mVertices[0].data());
glNormalPointer(GL_FLOAT, 0, mNormals[0].data());
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glDrawArrays(GL_TRIANGLES, 0, mVertices.size());
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
sFancySpheres.draw();
// glVertexPointer(3, GL_FLOAT, 0, mVertices[0].data());
// glNormalPointer(GL_FLOAT, 0, mNormals[0].data());
// glEnableClientState(GL_VERTEX_ARRAY);
// glEnableClientState(GL_NORMAL_ARRAY);
// glDrawArrays(GL_TRIANGLES, 0, mVertices.size());
// glDisableClientState(GL_VERTEX_ARRAY);
// glDisableClientState(GL_NORMAL_ARRAY);
glDisable(GL_LIGHTING);
}
@ -413,93 +498,6 @@ void RenderingWidget::initializeGL()
mCamera.setTarget(Vector3f(0, 0, 0));
mInitFrame.orientation = mCamera.orientation().inverse();
mInitFrame.position = mCamera.viewMatrix().translation();
// create a kind of fractal sphere
{
IcoSphere pattern;
int levels = 3;
float scale = 0.45;
float radius = 100;
std::vector<Vector3f> centers;
std::vector<int> parents;
std::vector<float> radii;
centers.push_back(Vector3f::Zero());
parents.push_back(-1);
radii.push_back(radius);
radius *= scale;
// generate level 1 using icosphere vertices
{
float dist = radii[0]*0.9;
for (int i=0; i<12; ++i)
{
centers.push_back(pattern.vertices()[i] * dist);
radii.push_back(radius);
parents.push_back(0);
}
}
scale = 0.33;
static const float angles [10] = {
0, 0,
M_PI, 0.*M_PI,
M_PI, 0.5*M_PI,
M_PI, 1.*M_PI,
M_PI, 1.5*M_PI};
// generate other levels
int start = 1;
float maxAngle = M_PI/2;
for (int l=1; l<levels; l++)
{
radius *= scale;
int end = centers.size();
for (int i=start; i<end; ++i)
{
Vector3f c = centers[i];
Vector3f ax0, ax1;
if (parents[i]==-1)
ax0 = Vector3f::UnitZ();
else
ax0 = (c - centers[parents[i]]).normalized();
ax1 = ax0.unitOrthogonal();
Quaternionf q;
q.setFromTwoVectors(Vector3f::UnitZ(), ax0);
Transform3f t = Translation3f(c) * q * Scaling3f(radii[i]+radius);
for (int j=0; j<5; ++j)
{
Vector3f newC = c + ( (AngleAxisf(angles[j*2+1], ax0)
* AngleAxisf(angles[j*2+0] * (l==1 ? 0.35 : 0.5), ax1)) * ax0)*(radii[i] + radius*0.8);
centers.push_back(newC);
radii.push_back(radius);
parents.push_back(i);
}
}
start = end;
maxAngle = M_PI/2;
}
parents.clear();
// instanciate the geometry
{
const std::vector<int>& sphereIndices = pattern.indices(2);
std::cout << "instanciate geometry... (" << sphereIndices.size() * centers.size() << " vertices)\n";
mVertices.reserve(sphereIndices.size() * centers.size());
mNormals.reserve(sphereIndices.size() * centers.size());
int end = centers.size();
for (int i=0; i<end; ++i)
{
Transform3f t = Translation3f(centers[i]) * Scaling3f(radii[i]);
// copy vertices
for (unsigned int j=0; j<sphereIndices.size(); ++j)
{
Vector3f v = pattern.vertices()[sphereIndices[j]];
mVertices.push_back(t * v);
mNormals.push_back(v);
}
}
}
}
}
void RenderingWidget::resizeGL(int width, int height)
@ -539,10 +537,7 @@ void RenderingWidget::resetCamera()
Frame aux1 = mCamera.frame();
aux1.orientation = aux1.orientation.inverse();
aux1.position = mCamera.viewMatrix().translation();
float rangle = AngleAxisf(aux0.orientation.inverse() * aux1.orientation).angle();
if (rangle>M_PI)
rangle = 2.*M_PI - rangle;
float duration = rangle * 0.9;
float duration = aux0.orientation.angularDistance(aux1.orientation) * 0.9;
if (duration<0.1) duration = 0.1;
// put the camera at that time step:
@ -660,3 +655,4 @@ int main(int argc, char *argv[])
}
#include "quaternion_demo.moc"

@ -48,6 +48,10 @@ template<typename Scalar> void geometry(void)
typedef Translation<Scalar,2> Translation2;
typedef Translation<Scalar,3> Translation3;
Scalar largeEps = test_precision<Scalar>();
if (ei_is_same_type<Scalar,float>::ret)
largeEps = 1e-3f;
Quaternion q1, q2;
Vector3 v0 = Vector3::Random(),
v1 = Vector3::Random(),
@ -82,6 +86,12 @@ template<typename Scalar> void geometry(void)
q1 = AngleAxis(a, v0.normalized());
q2 = AngleAxis(a, v1.normalized());
// angular distance
Scalar refangle = ei_abs(AngleAxis(q1.inverse()*q2).angle());
if (refangle>M_PI)
refangle = 2.*M_PI - refangle;
VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps));
// rotation matrix conversion
VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
VERIFY_IS_APPROX(q1 * q2 * v2,