mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Add smart cast functions and ctor with scalar conversion (explicit)
to all classes of the Geometry module. By smart I mean that if current type == new type, then it returns a const reference to *this => zero overhead
This commit is contained in:
parent
568a7e8eba
commit
e5b8a59cfa
@ -169,4 +169,9 @@ template<typename ExpressionType, int RowsOrSize=Dynamic, int Cols=Dynamic> stru
|
||||
typedef Block<ExpressionType, RowsOrSize, Cols> Type;
|
||||
};
|
||||
|
||||
template<typename CurrentType, typename NewType> struct ei_cast_return_type
|
||||
{
|
||||
typedef typename ei_meta_if<ei_is_same_type<CurrentType,NewType>::ret,const CurrentType&,NewType>::ret type;
|
||||
};
|
||||
|
||||
#endif // EIGEN_XPRHELPER_H
|
||||
|
@ -47,7 +47,7 @@
|
||||
* \note This class is not aimed to be used to store a rotation transformation,
|
||||
* but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
|
||||
* and transformation objects.
|
||||
*
|
||||
*
|
||||
* \sa class Quaternion, class Transform, MatrixBase::UnitX()
|
||||
*/
|
||||
|
||||
@ -64,7 +64,7 @@ class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
|
||||
public:
|
||||
|
||||
using Base::operator*;
|
||||
|
||||
|
||||
enum { Dim = 3 };
|
||||
/** the scalar type of the coefficients */
|
||||
typedef _Scalar Scalar;
|
||||
@ -132,6 +132,23 @@ public:
|
||||
template<typename Derived>
|
||||
AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
|
||||
Matrix3 toRotationMatrix(void) const;
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
typename ei_cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
|
||||
{ return typename ei_cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
|
||||
{
|
||||
m_axis = other.axis().template cast<OtherScalarType>();
|
||||
m_angle = other.angle();
|
||||
}
|
||||
};
|
||||
|
||||
/** \ingroup GeometryModule
|
||||
|
@ -49,198 +49,216 @@ class Hyperplane
|
||||
: public ei_with_aligned_operator_new<_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1>
|
||||
#endif
|
||||
{
|
||||
public:
|
||||
public:
|
||||
|
||||
enum { AmbientDimAtCompileTime = _AmbientDim };
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
|
||||
typedef Matrix<Scalar,AmbientDimAtCompileTime==Dynamic
|
||||
? Dynamic
|
||||
: AmbientDimAtCompileTime+1,1> Coefficients;
|
||||
typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
|
||||
enum { AmbientDimAtCompileTime = _AmbientDim };
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
|
||||
typedef Matrix<Scalar,AmbientDimAtCompileTime==Dynamic
|
||||
? Dynamic
|
||||
: AmbientDimAtCompileTime+1,1> Coefficients;
|
||||
typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
|
||||
|
||||
/** Default constructor without initialization */
|
||||
inline explicit Hyperplane() {}
|
||||
/** Default constructor without initialization */
|
||||
inline explicit Hyperplane() {}
|
||||
|
||||
/** Constructs a dynamic-size hyperplane with \a _dim the dimension
|
||||
* of the ambient space */
|
||||
inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {}
|
||||
/** Constructs a dynamic-size hyperplane with \a _dim the dimension
|
||||
* of the ambient space */
|
||||
inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {}
|
||||
|
||||
/** Construct a plane from its normal \a n and a point \a e onto the plane.
|
||||
* \warning the vector normal is assumed to be normalized.
|
||||
*/
|
||||
inline Hyperplane(const VectorType& n, const VectorType e)
|
||||
: m_coeffs(n.size()+1)
|
||||
{
|
||||
normal() = n;
|
||||
offset() = -e.dot(n);
|
||||
/** Construct a plane from its normal \a n and a point \a e onto the plane.
|
||||
* \warning the vector normal is assumed to be normalized.
|
||||
*/
|
||||
inline Hyperplane(const VectorType& n, const VectorType e)
|
||||
: m_coeffs(n.size()+1)
|
||||
{
|
||||
normal() = n;
|
||||
offset() = -e.dot(n);
|
||||
}
|
||||
|
||||
/** Constructs a plane from its normal \a n and distance to the origin \a d
|
||||
* such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
|
||||
* \warning the vector normal is assumed to be normalized.
|
||||
*/
|
||||
inline Hyperplane(const VectorType& n, Scalar d)
|
||||
: m_coeffs(n.size()+1)
|
||||
{
|
||||
normal() = n;
|
||||
offset() = d;
|
||||
}
|
||||
|
||||
/** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
|
||||
* is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
|
||||
*/
|
||||
static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
|
||||
{
|
||||
Hyperplane result(p0.size());
|
||||
result.normal() = (p1 - p0).unitOrthogonal();
|
||||
result.offset() = -result.normal().dot(p0);
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Constructs a hyperplane passing through the three points. The dimension of the ambient space
|
||||
* is required to be exactly 3.
|
||||
*/
|
||||
static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3);
|
||||
Hyperplane result(p0.size());
|
||||
result.normal() = (p2 - p0).cross(p1 - p0).normalized();
|
||||
result.offset() = -result.normal().dot(p0);
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Constructs a hyperplane passing through the parametrized line \a parametrized.
|
||||
* If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
|
||||
* so an arbitrary choice is made.
|
||||
*/
|
||||
// FIXME to be consitent with the rest this could be implemented as a static Through function ??
|
||||
explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
|
||||
{
|
||||
normal() = parametrized.direction().unitOrthogonal();
|
||||
offset() = -normal().dot(parametrized.origin());
|
||||
}
|
||||
|
||||
~Hyperplane() {}
|
||||
|
||||
/** \returns the dimension in which the plane holds */
|
||||
inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : AmbientDimAtCompileTime; }
|
||||
|
||||
/** normalizes \c *this */
|
||||
void normalize(void)
|
||||
{
|
||||
m_coeffs /= normal().norm();
|
||||
}
|
||||
|
||||
/** \returns the signed distance between the plane \c *this and a point \a p.
|
||||
* \sa absDistance()
|
||||
*/
|
||||
inline Scalar signedDistance(const VectorType& p) const { return p.dot(normal()) + offset(); }
|
||||
|
||||
/** \returns the absolute distance between the plane \c *this and a point \a p.
|
||||
* \sa signedDistance()
|
||||
*/
|
||||
inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); }
|
||||
|
||||
/** \returns the projection of a point \a p onto the plane \c *this.
|
||||
*/
|
||||
inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
|
||||
|
||||
/** \returns a constant reference to the unit normal vector of the plane, which corresponds
|
||||
* to the linear part of the implicit equation.
|
||||
*/
|
||||
inline const NormalReturnType normal() const { return NormalReturnType(m_coeffs,0,0,dim(),1); }
|
||||
|
||||
/** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
|
||||
* to the linear part of the implicit equation.
|
||||
*/
|
||||
inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
|
||||
|
||||
/** \returns the distance to the origin, which is also the "constant term" of the implicit equation
|
||||
* \warning the vector normal is assumed to be normalized.
|
||||
*/
|
||||
inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
|
||||
|
||||
/** \returns a non-constant reference to the distance to the origin, which is also the constant part
|
||||
* of the implicit equation */
|
||||
inline Scalar& offset() { return m_coeffs(dim()); }
|
||||
|
||||
/** \returns a constant reference to the coefficients c_i of the plane equation:
|
||||
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
|
||||
*/
|
||||
inline const Coefficients& coeffs() const { return m_coeffs; }
|
||||
|
||||
/** \returns a non-constant reference to the coefficients c_i of the plane equation:
|
||||
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
|
||||
*/
|
||||
inline Coefficients& coeffs() { return m_coeffs; }
|
||||
|
||||
/** \returns the intersection of *this with \a other.
|
||||
*
|
||||
* \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
|
||||
*
|
||||
* \note If \a other is approximately parallel to *this, this method will return any point on *this.
|
||||
*/
|
||||
VectorType intersection(const Hyperplane& other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2);
|
||||
Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
|
||||
// since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
|
||||
// whether the two lines are approximately parallel.
|
||||
if(ei_isMuchSmallerThan(det, Scalar(1)))
|
||||
{ // special case where the two lines are approximately parallel. Pick any point on the first line.
|
||||
if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0)))
|
||||
return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
|
||||
else
|
||||
return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
|
||||
}
|
||||
|
||||
/** Constructs a plane from its normal \a n and distance to the origin \a d
|
||||
* such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
|
||||
* \warning the vector normal is assumed to be normalized.
|
||||
*/
|
||||
inline Hyperplane(const VectorType& n, Scalar d)
|
||||
: m_coeffs(n.size()+1)
|
||||
{
|
||||
normal() = n;
|
||||
offset() = d;
|
||||
else
|
||||
{ // general case
|
||||
Scalar invdet = Scalar(1) / det;
|
||||
return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
|
||||
invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
|
||||
}
|
||||
}
|
||||
|
||||
/** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
|
||||
* is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
|
||||
*/
|
||||
static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
|
||||
/** \returns the transformation of \c *this by the transformation matrix \a mat.
|
||||
*
|
||||
* \param mat the Dim x Dim transformation matrix
|
||||
* \param traits specifies whether the matrix \a mat represents an Isometry
|
||||
* or a more generic Affine transformation. The default is Affine.
|
||||
*/
|
||||
template<typename XprType>
|
||||
inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
|
||||
{
|
||||
if (traits==Affine)
|
||||
normal() = mat.inverse().transpose() * normal();
|
||||
else if (traits==Isometry)
|
||||
normal() = mat * normal();
|
||||
else
|
||||
{
|
||||
Hyperplane result(p0.size());
|
||||
result.normal() = (p1 - p0).unitOrthogonal();
|
||||
result.offset() = -result.normal().dot(p0);
|
||||
return result;
|
||||
ei_assert("invalid traits value in Hyperplane::transform()");
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Constructs a hyperplane passing through the three points. The dimension of the ambient space
|
||||
* is required to be exactly 3.
|
||||
*/
|
||||
static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3);
|
||||
Hyperplane result(p0.size());
|
||||
result.normal() = (p2 - p0).cross(p1 - p0).normalized();
|
||||
result.offset() = -result.normal().dot(p0);
|
||||
return result;
|
||||
}
|
||||
/** \returns the transformation of \c *this by the transformation \a t
|
||||
*
|
||||
* \param t the transformation of dimension Dim
|
||||
* \param traits specifies whether the transformation \a t represents an Isometry
|
||||
* or a more generic Affine transformation. The default is Affine.
|
||||
* Other kind of transformations are not supported.
|
||||
*/
|
||||
inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t,
|
||||
TransformTraits traits = Affine)
|
||||
{
|
||||
transform(t.linear(), traits);
|
||||
offset() -= t.translation().dot(normal());
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Constructs a hyperplane passing through the parametrized line \a parametrized.
|
||||
* If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
|
||||
* so an arbitrary choice is made.
|
||||
*/
|
||||
// FIXME to be consitent with the rest this could be implemented as a static Through function ??
|
||||
explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
|
||||
{
|
||||
normal() = parametrized.direction().unitOrthogonal();
|
||||
offset() = -normal().dot(parametrized.origin());
|
||||
}
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
typename ei_cast_return_type<Hyperplane,
|
||||
Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
|
||||
{
|
||||
return typename ei_cast_return_type<Hyperplane,
|
||||
Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
|
||||
}
|
||||
|
||||
~Hyperplane() {}
|
||||
|
||||
/** \returns the dimension in which the plane holds */
|
||||
inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : AmbientDimAtCompileTime; }
|
||||
|
||||
/** normalizes \c *this */
|
||||
void normalize(void)
|
||||
{
|
||||
m_coeffs /= normal().norm();
|
||||
}
|
||||
|
||||
/** \returns the signed distance between the plane \c *this and a point \a p.
|
||||
* \sa absDistance()
|
||||
*/
|
||||
inline Scalar signedDistance(const VectorType& p) const { return p.dot(normal()) + offset(); }
|
||||
|
||||
/** \returns the absolute distance between the plane \c *this and a point \a p.
|
||||
* \sa signedDistance()
|
||||
*/
|
||||
inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); }
|
||||
|
||||
/** \returns the projection of a point \a p onto the plane \c *this.
|
||||
*/
|
||||
inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
|
||||
|
||||
/** \returns a constant reference to the unit normal vector of the plane, which corresponds
|
||||
* to the linear part of the implicit equation.
|
||||
*/
|
||||
inline const NormalReturnType normal() const { return NormalReturnType(m_coeffs,0,0,dim(),1); }
|
||||
|
||||
/** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
|
||||
* to the linear part of the implicit equation.
|
||||
*/
|
||||
inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
|
||||
|
||||
/** \returns the distance to the origin, which is also the "constant term" of the implicit equation
|
||||
* \warning the vector normal is assumed to be normalized.
|
||||
*/
|
||||
inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
|
||||
|
||||
/** \returns a non-constant reference to the distance to the origin, which is also the constant part
|
||||
* of the implicit equation */
|
||||
inline Scalar& offset() { return m_coeffs(dim()); }
|
||||
|
||||
/** \returns a constant reference to the coefficients c_i of the plane equation:
|
||||
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
|
||||
*/
|
||||
inline const Coefficients& coeffs() const { return m_coeffs; }
|
||||
|
||||
/** \returns a non-constant reference to the coefficients c_i of the plane equation:
|
||||
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
|
||||
*/
|
||||
inline Coefficients& coeffs() { return m_coeffs; }
|
||||
|
||||
/** \returns the intersection of *this with \a other.
|
||||
*
|
||||
* \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
|
||||
*
|
||||
* \note If \a other is approximately parallel to *this, this method will return any point on *this.
|
||||
*/
|
||||
VectorType intersection(const Hyperplane& other)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2);
|
||||
Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
|
||||
// since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
|
||||
// whether the two lines are approximately parallel.
|
||||
if(ei_isMuchSmallerThan(det, Scalar(1)))
|
||||
{ // special case where the two lines are approximately parallel. Pick any point on the first line.
|
||||
if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0)))
|
||||
return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
|
||||
else
|
||||
return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
|
||||
}
|
||||
else
|
||||
{ // general case
|
||||
Scalar invdet = Scalar(1) / det;
|
||||
return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
|
||||
invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
|
||||
}
|
||||
}
|
||||
|
||||
/** \returns the transformation of \c *this by the transformation matrix \a mat.
|
||||
*
|
||||
* \param mat the Dim x Dim transformation matrix
|
||||
* \param traits specifies whether the matrix \a mat represents an Isometry
|
||||
* or a more generic Affine transformation. The default is Affine.
|
||||
*/
|
||||
template<typename XprType>
|
||||
inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
|
||||
{
|
||||
if (traits==Affine)
|
||||
normal() = mat.inverse().transpose() * normal();
|
||||
else if (traits==Isometry)
|
||||
normal() = mat * normal();
|
||||
else
|
||||
{
|
||||
ei_assert("invalid traits value in Hyperplane::transform()");
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns the transformation of \c *this by the transformation \a t
|
||||
*
|
||||
* \param t the transformation of dimension Dim
|
||||
* \param traits specifies whether the transformation \a t represents an Isometry
|
||||
* or a more generic Affine transformation. The default is Affine.
|
||||
* Other kind of transformations are not supported.
|
||||
*/
|
||||
inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t,
|
||||
TransformTraits traits = Affine)
|
||||
{
|
||||
transform(t.linear(), traits);
|
||||
offset() -= t.translation().dot(normal());
|
||||
return *this;
|
||||
}
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other)
|
||||
{ m_coeffs = other.coeffs().template cast<OtherScalarType>(); }
|
||||
|
||||
protected:
|
||||
|
||||
Coefficients m_coeffs;
|
||||
Coefficients m_coeffs;
|
||||
};
|
||||
|
||||
#endif // EIGEN_HYPERPLANE_H
|
||||
|
@ -45,65 +45,86 @@ class ParametrizedLine
|
||||
: public ei_with_aligned_operator_new<_Scalar,_AmbientDim>
|
||||
#endif
|
||||
{
|
||||
public:
|
||||
public:
|
||||
|
||||
enum { AmbientDimAtCompileTime = _AmbientDim };
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
|
||||
enum { AmbientDimAtCompileTime = _AmbientDim };
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
|
||||
|
||||
/** Default constructor without initialization */
|
||||
inline explicit ParametrizedLine() {}
|
||||
/** Default constructor without initialization */
|
||||
inline explicit ParametrizedLine() {}
|
||||
|
||||
/** Constructs a dynamic-size line with \a _dim the dimension
|
||||
* of the ambient space */
|
||||
inline explicit ParametrizedLine(int _dim) : m_origin(_dim), m_direction(_dim) {}
|
||||
/** Constructs a dynamic-size line with \a _dim the dimension
|
||||
* of the ambient space */
|
||||
inline explicit ParametrizedLine(int _dim) : m_origin(_dim), m_direction(_dim) {}
|
||||
|
||||
/** Initializes a parametrized line of direction \a direction and origin \a origin.
|
||||
* \warning the vector direction is assumed to be normalized.
|
||||
*/
|
||||
ParametrizedLine(const VectorType& origin, const VectorType& direction)
|
||||
: m_origin(origin), m_direction(direction) {}
|
||||
/** Initializes a parametrized line of direction \a direction and origin \a origin.
|
||||
* \warning the vector direction is assumed to be normalized.
|
||||
*/
|
||||
ParametrizedLine(const VectorType& origin, const VectorType& direction)
|
||||
: m_origin(origin), m_direction(direction) {}
|
||||
|
||||
explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
|
||||
explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
|
||||
|
||||
/** Constructs a parametrized line going from \a p0 to \a p1. */
|
||||
static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
|
||||
{ return ParametrizedLine(p0, (p1-p0).normalized()); }
|
||||
/** Constructs a parametrized line going from \a p0 to \a p1. */
|
||||
static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
|
||||
{ return ParametrizedLine(p0, (p1-p0).normalized()); }
|
||||
|
||||
~ParametrizedLine() {}
|
||||
~ParametrizedLine() {}
|
||||
|
||||
/** \returns the dimension in which the line holds */
|
||||
inline int dim() const { return m_direction.size(); }
|
||||
/** \returns the dimension in which the line holds */
|
||||
inline int dim() const { return m_direction.size(); }
|
||||
|
||||
const VectorType& origin() const { return m_origin; }
|
||||
VectorType& origin() { return m_origin; }
|
||||
const VectorType& origin() const { return m_origin; }
|
||||
VectorType& origin() { return m_origin; }
|
||||
|
||||
const VectorType& direction() const { return m_direction; }
|
||||
VectorType& direction() { return m_direction; }
|
||||
const VectorType& direction() const { return m_direction; }
|
||||
VectorType& direction() { return m_direction; }
|
||||
|
||||
/** \returns the squared distance of a point \a p to its projection onto the line \c *this.
|
||||
* \sa distance()
|
||||
*/
|
||||
RealScalar squaredDistance(const VectorType& p) const
|
||||
{
|
||||
VectorType diff = p-origin();
|
||||
return (diff - diff.dot(direction())* direction()).norm2();
|
||||
}
|
||||
/** \returns the distance of a point \a p to its projection onto the line \c *this.
|
||||
* \sa squaredDistance()
|
||||
*/
|
||||
RealScalar distance(const VectorType& p) const { return ei_sqrt(squaredDistance(p)); }
|
||||
/** \returns the squared distance of a point \a p to its projection onto the line \c *this.
|
||||
* \sa distance()
|
||||
*/
|
||||
RealScalar squaredDistance(const VectorType& p) const
|
||||
{
|
||||
VectorType diff = p-origin();
|
||||
return (diff - diff.dot(direction())* direction()).norm2();
|
||||
}
|
||||
/** \returns the distance of a point \a p to its projection onto the line \c *this.
|
||||
* \sa squaredDistance()
|
||||
*/
|
||||
RealScalar distance(const VectorType& p) const { return ei_sqrt(squaredDistance(p)); }
|
||||
|
||||
/** \returns the projection of a point \a p onto the line \c *this. */
|
||||
VectorType projection(const VectorType& p) const
|
||||
{ return origin() + (p-origin()).dot(direction()) * direction(); }
|
||||
/** \returns the projection of a point \a p onto the line \c *this. */
|
||||
VectorType projection(const VectorType& p) const
|
||||
{ return origin() + (p-origin()).dot(direction()) * direction(); }
|
||||
|
||||
Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
|
||||
Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
|
||||
|
||||
protected:
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
typename ei_cast_return_type<ParametrizedLine,
|
||||
ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
|
||||
{
|
||||
return typename ei_cast_return_type<ParametrizedLine,
|
||||
ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
|
||||
}
|
||||
|
||||
VectorType m_origin, m_direction;
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime>& other)
|
||||
{
|
||||
m_origin = other.origin().template cast<OtherScalarType>();
|
||||
m_direction = other.direction().template cast<OtherScalarType>();
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
VectorType m_origin, m_direction;
|
||||
};
|
||||
|
||||
/** Constructs a parametrized line from a 2D hyperplane
|
||||
|
@ -195,6 +195,22 @@ public:
|
||||
template<typename Derived>
|
||||
Vector3 operator* (const MatrixBase<Derived>& vec) const;
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
typename ei_cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const
|
||||
{ return typename ei_cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); }
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
explicit Quaternion(const Quaternion<OtherScalarType>& other)
|
||||
{
|
||||
m_coeffs = other.coeffs().template cast<OtherScalarType>();
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/** \ingroup GeometryModule
|
||||
|
@ -100,6 +100,22 @@ public:
|
||||
*/
|
||||
inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
|
||||
{ return m_angle * (1-t) + other.angle() * t; }
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
typename ei_cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
|
||||
{ return typename ei_cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
|
||||
{
|
||||
m_angle = other.angle();
|
||||
}
|
||||
};
|
||||
|
||||
/** \ingroup GeometryModule
|
||||
|
@ -128,6 +128,20 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
typename ei_cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type cast() const
|
||||
{ return typename ei_cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type(*this); }
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
explicit Scaling(const Scaling<OtherScalarType,Dim>& other)
|
||||
{ m_coeffs = other.coeffs().template cast<OtherScalarType>(); }
|
||||
|
||||
};
|
||||
|
||||
/** \addtogroup GeometryModule */
|
||||
|
@ -241,9 +241,25 @@ public:
|
||||
|
||||
inline const MatrixType inverse(TransformTraits traits = Affine) const;
|
||||
|
||||
/** \returns a const pointer to the column major internal matrix */
|
||||
const Scalar* data() const { return m_matrix.data(); }
|
||||
/** \returns a non-const pointer to the column major internal matrix */
|
||||
Scalar* data() { return m_matrix.data(); }
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const
|
||||
{ return typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); }
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
explicit Transform(const Transform<OtherScalarType,Dim>& other)
|
||||
{ m_matrix = other.matrix().template cast<OtherScalarType>(); }
|
||||
|
||||
protected:
|
||||
|
||||
};
|
||||
|
@ -91,7 +91,7 @@ public:
|
||||
/** Concatenates two translation */
|
||||
inline Translation operator* (const Translation& other) const
|
||||
{ return Translation(m_coeffs + other.m_coeffs); }
|
||||
|
||||
|
||||
/** Concatenates a translation and a scaling */
|
||||
inline TransformType operator* (const ScalingType& other) const;
|
||||
|
||||
@ -131,6 +131,20 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
typename ei_cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
|
||||
{ return typename ei_cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<typename OtherScalarType>
|
||||
explicit Translation(const Translation<OtherScalarType,Dim>& other)
|
||||
{ m_coeffs = other.vector().template cast<OtherScalarType>(); }
|
||||
|
||||
};
|
||||
|
||||
/** \addtogroup GeometryModule */
|
||||
|
Loading…
Reference in New Issue
Block a user