Docs: aliasing and component-wise operations.

This commit is contained in:
Jitse Niesen 2010-11-16 17:28:59 +00:00
parent da05b6af0e
commit e54c8d20cb
2 changed files with 40 additions and 1 deletions

View File

@ -128,7 +128,26 @@ functions provided:
\section TopicAliasingCwise Aliasing and component-wise operations
Synopsis: Things like mat = 2 * mat, matA = matA + matB and arr = arr.sin() are safe.
As explained above, it may be dangerous if the same matrix or array occurs on both the left-hand side and the
right-hand side of an assignment operator, and it is then often necessary to evaluate the right-hand side
explicitly. However, applying component-wise operations (such as matrix addition, scalar multiplication and
array multiplication) is safe.
The following example has only component-wise operations. Thus, there is no need for .eval() even though
the same matrix appears on both sides of the assignments.
<table class="example">
<tr><th>Example</th><th>Output</th></tr>
<tr><td>
\include TopicAliasing_cwise.cpp
</td>
<td>
\verbinclude TopicAliasing_cwise.out
</td></tr></table>
In general, an assignment is safe if the (i,j) entry of the expression on the right-hand side depends only on
the (i,j) entry of the matrix or array on the left-hand side and not on any other entries. In that case it is
not necessary to evaluate the right-hand side explicitly.
\section TopicAliasingMatrixMult Aliasing and matrix multiplication

View File

@ -0,0 +1,20 @@
MatrixXf mat(2,2);
mat << 1, 2, 4, 7;
cout << "Here is the matrix mat:\n" << mat << endl << endl;
mat = 2 * mat;
cout << "After 'mat = 2 * mat', mat = \n" << mat << endl << endl;
mat = mat - MatrixXf::Identity(2,2);
cout << "After the subtraction, it becomes\n" << mat << endl << endl;
ArrayXXf arr = mat;
arr = arr.square();
cout << "After squaring, it becomes\n" << arr << endl << endl;
// Combining all operations in one statement:
mat << 1, 2, 4, 7;
mat = (2 * mat - MatrixXf::Identity(2,2)).array().square();
cout << "Doing everything at once yields\n" << mat << endl << endl;