Solve the issue found by Timothy in solveTriangular:

=> row-major rhs are now evaluated to a column-major
     temporary before the computations.
Add solveInPlace in Cholesky*
This commit is contained in:
Gael Guennebaud 2008-10-13 13:14:43 +00:00
parent 537a0e0a52
commit e2bd8623f8
9 changed files with 129 additions and 45 deletions

View File

@ -74,6 +74,9 @@ template<typename MatrixType> class Cholesky
template<typename Derived>
typename Derived::Eval solve(const MatrixBase<Derived> &b) const;
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
void compute(const MatrixType& matrix);
protected:
@ -141,8 +144,37 @@ typename Derived::Eval Cholesky<MatrixType>::solve(const MatrixBase<Derived> &b)
{
const int size = m_matrix.rows();
ei_assert(size==b.rows());
typename ei_eval_to_column_major<Derived>::type x(b);
solveInPlace(x);
return x;
//return m_matrix.adjoint().template part<Upper>().solveTriangular(matrixL().solveTriangular(b));
}
return m_matrix.adjoint().template part<Upper>().solveTriangular(matrixL().solveTriangular(b));
/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
* The result is stored in \a bAndx
*
* \returns true in case of success, false otherwise.
*
* In other words, it computes \f$ b = A^{-1} b \f$ with
* \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
* \param bAndX stores both the matrix \f$ b \f$ and the result \f$ x \f$
*
* Example: \include Cholesky_solve.cpp
* Output: \verbinclude Cholesky_solve.out
*
* \sa MatrixBase::cholesky(), Cholesky::solve()
*/
template<typename MatrixType>
template<typename Derived>
bool Cholesky<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
const int size = m_matrix.rows();
ei_assert(size==bAndX.rows());
if (!m_isPositiveDefinite)
return false;
matrixL().solveTriangularInPlace(bAndX);
m_matrix.adjoint().template part<Upper>().solveTriangularInPlace(bAndX);
return true;
}
/** \cholesky_module

View File

@ -71,6 +71,9 @@ template<typename MatrixType> class CholeskyWithoutSquareRoot
template<typename Derived>
typename Derived::Eval solve(const MatrixBase<Derived> &b) const;
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
void compute(const MatrixType& matrix);
protected:
@ -101,7 +104,7 @@ void CholeskyWithoutSquareRoot<MatrixType>::compute(const MatrixType& a)
m_matrix = a;
return;
}
// Let's preallocate a temporay vector to evaluate the matrix-vector product into it.
// Unlike the standard Cholesky decomposition, here we cannot evaluate it to the destination
// matrix because it a sub-row which is not compatible suitable for efficient packet evaluation.
@ -144,8 +147,8 @@ void CholeskyWithoutSquareRoot<MatrixType>::compute(const MatrixType& a)
* \param b the column vector \f$ b \f$, which can also be a matrix.
*
* See Cholesky::solve() for a example.
*
* \sa MatrixBase::choleskyNoSqrt()
*
* \sa CholeskyWithoutSquareRoot::solveInPlace(), MatrixBase::choleskyNoSqrt()
*/
template<typename MatrixType>
template<typename Derived>
@ -161,6 +164,34 @@ typename Derived::Eval CholeskyWithoutSquareRoot<MatrixType>::solve(const Matrix
);
}
/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
* The result is stored in \a bAndx
*
* \returns true in case of success, false otherwise.
*
* In other words, it computes \f$ b = A^{-1} b \f$ with
* \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left.
* \param bAndX stores both the matrix \f$ b \f$ and the result \f$ x \f$
*
* Example: \include Cholesky_solve.cpp
* Output: \verbinclude Cholesky_solve.out
*
* \sa MatrixBase::cholesky(), CholeskyWithoutSquareRoot::solve()
*/
template<typename MatrixType>
template<typename Derived>
bool CholeskyWithoutSquareRoot<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
const int size = m_matrix.rows();
ei_assert(size==bAndX.rows());
if (!m_isPositiveDefinite)
return false;
matrixL().solveTriangularInPlace(bAndX);
bAndX *= m_matrix.cwise().inverse().template part<Diagonal>();
m_matrix.adjoint().template part<UnitUpper>().solveTriangularInPlace(bAndX);
return true;
}
/** \cholesky_module
* \returns the Cholesky decomposition without square root of \c *this
*/

View File

@ -320,7 +320,8 @@ template<typename Derived> class MatrixBase
Derived& operator*=(const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
typename OtherDerived::Eval solveTriangular(const MatrixBase<OtherDerived>& other) const;
typename ei_eval_to_column_major<OtherDerived>::type
solveTriangular(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
void solveTriangularInPlace(MatrixBase<OtherDerived>& other) const;
@ -544,11 +545,11 @@ template<typename Derived> class MatrixBase
const Select<Derived,ThenDerived,ElseDerived>
select(const MatrixBase<ThenDerived>& thenMatrix,
const MatrixBase<ElseDerived>& elseMatrix) const;
template<typename ThenDerived>
inline const Select<Derived,ThenDerived, NestByValue<typename ThenDerived::ConstantReturnType> >
select(const MatrixBase<ThenDerived>& thenMatrix, typename ThenDerived::Scalar elseScalar) const;
template<typename ElseDerived>
inline const Select<Derived, NestByValue<typename ElseDerived::ConstantReturnType>, ElseDerived >
select(typename ElseDerived::Scalar thenScalar, const MatrixBase<ElseDerived>& elseMatrix) const;
@ -581,7 +582,7 @@ template<typename Derived> class MatrixBase
template<typename OtherDerived>
EvalType cross(const MatrixBase<OtherDerived>& other) const;
EvalType unitOrthogonal(void) const;
#ifdef EIGEN_MATRIXBASE_PLUGIN
#include EIGEN_MATRIXBASE_PLUGIN
#endif

View File

@ -36,8 +36,6 @@ struct ei_product_coeff_impl;
template<int StorageOrder, int Index, typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl;
template<typename T> struct ei_product_eval_to_column_major;
/** \class ProductReturnType
*
* \brief Helper class to get the correct and optimized returned type of operator*
@ -70,7 +68,7 @@ struct ProductReturnType<Lhs,Rhs,CacheFriendlyProduct>
typedef typename ei_nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
typedef typename ei_nested<Rhs,Lhs::RowsAtCompileTime,
typename ei_product_eval_to_column_major<Rhs>::type
typename ei_eval_to_column_major<Rhs>::type
>::type RhsNested;
typedef Product<LhsNested, RhsNested, CacheFriendlyProduct> Type;
@ -706,23 +704,12 @@ inline Derived& MatrixBase<Derived>::lazyAssign(const Product<Lhs,Rhs,CacheFrien
return derived();
}
template<typename T> struct ei_product_eval_to_column_major
{
typedef Matrix<typename ei_traits<T>::Scalar,
ei_traits<T>::RowsAtCompileTime,
ei_traits<T>::ColsAtCompileTime,
ColMajor,
ei_traits<T>::MaxRowsAtCompileTime,
ei_traits<T>::MaxColsAtCompileTime
> type;
};
template<typename T> struct ei_product_copy_rhs
{
typedef typename ei_meta_if<
(ei_traits<T>::Flags & RowMajorBit)
|| (!(ei_traits<T>::Flags & DirectAccessBit)),
typename ei_product_eval_to_column_major<T>::type,
typename ei_eval_to_column_major<T>::type,
const T&
>::ret type;
};

View File

@ -88,12 +88,12 @@ struct ei_solve_triangular_selector<Lhs,Rhs,UpLo,RowMajor|IsDense>
other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
}
// now let process the remaining rows 4 at once
// now let's process the remaining rows 4 at once
for(int i=blockyStart; IsLower ? i<size : i>0; )
{
int startBlock = i;
int endBlock = startBlock + (IsLower ? 4 : -4);
/* Process the i cols times 4 rows block, and keep the result in a temporary vector */
// FIXME use fixed size block but take care to small fixed size matrices...
Matrix<Scalar,Dynamic,1> btmp(4);
@ -101,7 +101,7 @@ struct ei_solve_triangular_selector<Lhs,Rhs,UpLo,RowMajor|IsDense>
btmp = lhs.block(startBlock,0,4,i) * other.col(c).start(i);
else
btmp = lhs.block(i-3,i+1,4,size-1-i) * other.col(c).end(size-1-i);
/* Let's process the 4x4 sub-matrix as usual.
* btmp stores the diagonal coefficients used to update the remaining part of the result.
*/
@ -191,6 +191,12 @@ struct ei_solve_triangular_selector<Lhs,Rhs,UpLo,ColMajor|IsDense>
&(lhs.const_cast_derived().coeffRef(IsLower ? endBlock : 0, IsLower ? startBlock : endBlock+1)),
lhs.stride(),
btmp, &(other.coeffRef(IsLower ? endBlock : 0, c)));
// if (IsLower)
// other.col(c).end(size-endBlock) += (lhs.block(endBlock, startBlock, size-endBlock, endBlock-startBlock)
// * other.col(c).block(startBlock,endBlock-startBlock)).lazy();
// else
// other.col(c).end(size-endBlock) += (lhs.block(endBlock, startBlock, size-endBlock, endBlock-startBlock)
// * other.col(c).block(startBlock,endBlock-startBlock)).lazy();
}
/* Now we have to process the remaining part as usual */
@ -227,7 +233,15 @@ void MatrixBase<Derived>::solveTriangularInPlace(MatrixBase<OtherDerived>& other
ei_assert(!(Flags & ZeroDiagBit));
ei_assert(Flags & (UpperTriangularBit|LowerTriangularBit));
ei_solve_triangular_selector<Derived, OtherDerived>::run(derived(), other.derived());
const bool copy = ei_traits<OtherDerived>::Flags&RowMajorBit;
typedef typename ei_meta_if<copy,
typename ei_eval_to_column_major<OtherDerived>::type, OtherDerived&>::ret OtherCopy;
OtherCopy otherCopy(other.derived());
ei_solve_triangular_selector<Derived, typename ei_unref<OtherCopy>::type>::run(derived(), otherCopy);
if (copy)
other = otherCopy;
}
/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
@ -240,17 +254,17 @@ void MatrixBase<Derived>::solveTriangularInPlace(MatrixBase<OtherDerived>& other
* It is required that \c *this be marked as either an upper or a lower triangular matrix, which
* can be done by marked(), and that is automatically the case with expressions such as those returned
* by extract().
*
*
* \addexample SolveTriangular \label How to solve a triangular system (aka. how to multiply the inverse of a triangular matrix by another one)
*
*
* Example: \include MatrixBase_marked.cpp
* Output: \verbinclude MatrixBase_marked.out
*
*
* This function is essentially a wrapper to the faster solveTriangularInPlace() function creating
* a temporary copy of \a other, calling solveTriangularInPlace() on the copy and returning it.
* Therefore, if \a other is not needed anymore, it is quite faster to call solveTriangularInPlace()
* instead of solveTriangular().
*
*
* For users coming from BLAS, this function (and more specifically solveTriangularInPlace()) offer
* all the operations supported by the \c *TRSV and \c *TRSM BLAS routines.
*
@ -258,14 +272,15 @@ void MatrixBase<Derived>::solveTriangularInPlace(MatrixBase<OtherDerived>& other
* \code
* M * T^1 <=> T.transpose().solveTriangularInPlace(M.transpose());
* \endcode
*
*
* \sa solveTriangularInPlace(), marked(), extract()
*/
template<typename Derived>
template<typename OtherDerived>
typename OtherDerived::Eval MatrixBase<Derived>::solveTriangular(const MatrixBase<OtherDerived>& other) const
typename ei_eval_to_column_major<OtherDerived>::type
MatrixBase<Derived>::solveTriangular(const MatrixBase<OtherDerived>& other) const
{
typename OtherDerived::Eval res(other);
typename ei_eval_to_column_major<OtherDerived>::type res(other);
solveTriangularInPlace(res);
return res;
}

View File

@ -121,6 +121,18 @@ template<typename T> struct ei_eval<T,IsDense>
> type;
};
template<typename T> struct ei_eval_to_column_major
{
typedef Matrix<typename ei_traits<T>::Scalar,
ei_traits<T>::RowsAtCompileTime,
ei_traits<T>::ColsAtCompileTime,
ColMajor,
ei_traits<T>::MaxRowsAtCompileTime,
ei_traits<T>::MaxColsAtCompileTime
> type;
};
template<typename T> struct ei_must_nest_by_value { enum { ret = false }; };
template<typename T> struct ei_must_nest_by_value<NestByValue<T> > { enum { ret = true }; };

View File

@ -50,16 +50,16 @@ template<typename MatrixType> class SVD
AlignmentMask = int(PacketSize)-1,
MinSize = EIGEN_ENUM_MIN(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)
};
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType;
typedef Matrix<Scalar, MinSize, 1> SingularValuesType;
public:
SVD(const MatrixType& matrix)
: m_matU(matrix.rows(), std::min(matrix.rows(), matrix.cols())),
m_matV(matrix.cols(),matrix.cols()),
@ -69,7 +69,7 @@ template<typename MatrixType> class SVD
}
template<typename OtherDerived, typename ResultType>
void solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
const MatrixUType& matrixU() const { return m_matU; }
const SingularValuesType& singularValues() const { return m_sigma; }
@ -97,7 +97,7 @@ void SVD<MatrixType>::compute(const MatrixType& matrix)
const int m = matrix.rows();
const int n = matrix.cols();
const int nu = std::min(m,n);
m_matU.resize(m, nu);
m_matU.setZero();
m_sigma.resize(std::min(m,n));
@ -130,7 +130,7 @@ void SVD<MatrixType>::compute(const MatrixType& matrix)
}
m_sigma[k] = -m_sigma[k];
}
for (j = k+1; j < n; j++)
{
if ((k < nct) && (m_sigma[k] != 0.0))
@ -468,18 +468,18 @@ void SVD<MatrixType>::compute(const MatrixType& matrix)
template<typename MatrixType>
SVD<MatrixType>& SVD<MatrixType>::sort()
{
int mu = m_matU.rows();
int mv = m_matV.rows();
int mu = m_matU.rows();
int mv = m_matV.rows();
int n = m_matU.cols();
for (int i=0; i<n; i++)
{
int k = i;
int k = i;
Scalar p = m_sigma.coeff(i);
for (int j=i+1; j<n; j++)
{
if (m_sigma.coeff(j) > p)
if (m_sigma.coeff(j) > p)
{
k = j;
p = m_sigma.coeff(j);
@ -509,7 +509,7 @@ SVD<MatrixType>& SVD<MatrixType>::sort()
*/
template<typename MatrixType>
template<typename OtherDerived, typename ResultType>
void SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
{
const int rows = m_matU.rows();
ei_assert(b.rows() == rows);
@ -530,6 +530,7 @@ void SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* resul
result->col(j) = m_matV * aux;
}
return true;
}
/** \svd_module

View File

@ -217,6 +217,10 @@ template<typename Scalar> void sparse(int rows, int cols)
// TODO test row major
}
// test Cholesky
{
}
}
void test_sparse()

View File

@ -125,5 +125,6 @@ void test_triangular()
CALL_SUBTEST( triangular(MatrixXcf(4, 4)) );
CALL_SUBTEST( triangular(Matrix<std::complex<float>,8, 8>()) );
CALL_SUBTEST( triangular(MatrixXd(17,17)) );
CALL_SUBTEST( triangular(Matrix<float,Dynamic,Dynamic,RowMajor>(5, 5)) );
}
}