mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
rename PlanarRotation -> JacobiRotation
This commit is contained in:
parent
9044c98cff
commit
e259f71477
@ -377,9 +377,9 @@ template<typename Derived> class MatrixBase
|
||||
///////// Jacobi module /////////
|
||||
|
||||
template<typename OtherScalar>
|
||||
void applyOnTheLeft(Index p, Index q, const PlanarRotation<OtherScalar>& j);
|
||||
void applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j);
|
||||
template<typename OtherScalar>
|
||||
void applyOnTheRight(Index p, Index q, const PlanarRotation<OtherScalar>& j);
|
||||
void applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j);
|
||||
|
||||
///////// MatrixFunctions module /////////
|
||||
|
||||
|
@ -173,7 +173,7 @@ template<typename MatrixType, int QRPreconditioner = ColPivHouseholderQRPrecondi
|
||||
template<typename MatrixType, int UpLo = Lower> class LLT;
|
||||
template<typename MatrixType, int UpLo = Lower> class LDLT;
|
||||
template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence;
|
||||
template<typename Scalar> class PlanarRotation;
|
||||
template<typename Scalar> class JacobiRotation;
|
||||
|
||||
// Geometry module:
|
||||
template<typename Derived, int _Dim> class RotationBase;
|
||||
|
@ -411,7 +411,7 @@ void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
|
||||
bulge is chased down to the bottom of the active submatrix. */
|
||||
|
||||
ComplexScalar shift = computeShift(iu, iter);
|
||||
PlanarRotation<ComplexScalar> rot;
|
||||
JacobiRotation<ComplexScalar> rot;
|
||||
rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
|
||||
m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
|
||||
m_matT.topRows(std::min(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
|
||||
|
@ -326,7 +326,7 @@ inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, Scal
|
||||
if (q >= 0) // Two real eigenvalues
|
||||
{
|
||||
Scalar z = ei_sqrt(ei_abs(q));
|
||||
PlanarRotation<Scalar> rot;
|
||||
JacobiRotation<Scalar> rot;
|
||||
if (p >= 0)
|
||||
rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
|
||||
else
|
||||
|
@ -438,7 +438,7 @@ static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index
|
||||
|
||||
for (Index k = start; k < end; ++k)
|
||||
{
|
||||
PlanarRotation<RealScalar> rot;
|
||||
JacobiRotation<RealScalar> rot;
|
||||
rot.makeGivens(x, z);
|
||||
|
||||
// do T = G' T G
|
||||
|
@ -28,8 +28,8 @@
|
||||
|
||||
/** \ingroup Jacobi_Module
|
||||
* \jacobi_module
|
||||
* \class PlanarRotation
|
||||
* \brief Represents a rotation in the plane from a cosine-sine pair.
|
||||
* \class JacobiRotation
|
||||
* \brief Represents a rotation given by a cosine-sine pair.
|
||||
*
|
||||
* This class represents a Jacobi or Givens rotation.
|
||||
* This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by
|
||||
@ -44,16 +44,16 @@
|
||||
*
|
||||
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
*/
|
||||
template<typename Scalar> class PlanarRotation
|
||||
template<typename Scalar> class JacobiRotation
|
||||
{
|
||||
public:
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
/** Default constructor without any initialization. */
|
||||
PlanarRotation() {}
|
||||
JacobiRotation() {}
|
||||
|
||||
/** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */
|
||||
PlanarRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {}
|
||||
JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {}
|
||||
|
||||
Scalar& c() { return m_c; }
|
||||
Scalar c() const { return m_c; }
|
||||
@ -61,17 +61,17 @@ template<typename Scalar> class PlanarRotation
|
||||
Scalar s() const { return m_s; }
|
||||
|
||||
/** Concatenates two planar rotation */
|
||||
PlanarRotation operator*(const PlanarRotation& other)
|
||||
JacobiRotation operator*(const JacobiRotation& other)
|
||||
{
|
||||
return PlanarRotation(m_c * other.m_c - ei_conj(m_s) * other.m_s,
|
||||
return JacobiRotation(m_c * other.m_c - ei_conj(m_s) * other.m_s,
|
||||
ei_conj(m_c * ei_conj(other.m_s) + ei_conj(m_s) * ei_conj(other.m_c)));
|
||||
}
|
||||
|
||||
/** Returns the transposed transformation */
|
||||
PlanarRotation transpose() const { return PlanarRotation(m_c, -ei_conj(m_s)); }
|
||||
JacobiRotation transpose() const { return JacobiRotation(m_c, -ei_conj(m_s)); }
|
||||
|
||||
/** Returns the adjoint transformation */
|
||||
PlanarRotation adjoint() const { return PlanarRotation(ei_conj(m_c), -m_s); }
|
||||
JacobiRotation adjoint() const { return JacobiRotation(ei_conj(m_c), -m_s); }
|
||||
|
||||
template<typename Derived>
|
||||
bool makeJacobi(const MatrixBase<Derived>&, typename Derived::Index p, typename Derived::Index q);
|
||||
@ -92,7 +92,7 @@ template<typename Scalar> class PlanarRotation
|
||||
* \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
bool PlanarRotation<Scalar>::makeJacobi(RealScalar x, Scalar y, RealScalar z)
|
||||
bool JacobiRotation<Scalar>::makeJacobi(RealScalar x, Scalar y, RealScalar z)
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
if(y == Scalar(0))
|
||||
@ -129,11 +129,11 @@ bool PlanarRotation<Scalar>::makeJacobi(RealScalar x, Scalar y, RealScalar z)
|
||||
* Example: \include Jacobi_makeJacobi.cpp
|
||||
* Output: \verbinclude Jacobi_makeJacobi.out
|
||||
*
|
||||
* \sa PlanarRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
* \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
template<typename Derived>
|
||||
inline bool PlanarRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, typename Derived::Index p, typename Derived::Index q)
|
||||
inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, typename Derived::Index p, typename Derived::Index q)
|
||||
{
|
||||
return makeJacobi(ei_real(m.coeff(p,p)), m.coeff(p,q), ei_real(m.coeff(q,q)));
|
||||
}
|
||||
@ -155,7 +155,7 @@ inline bool PlanarRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, typ
|
||||
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
*/
|
||||
template<typename Scalar>
|
||||
void PlanarRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z)
|
||||
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z)
|
||||
{
|
||||
makeGivens(p, q, z, typename ei_meta_if<NumTraits<Scalar>::IsComplex, ei_meta_true, ei_meta_false>::ret());
|
||||
}
|
||||
@ -163,7 +163,7 @@ void PlanarRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar
|
||||
|
||||
// specialization for complexes
|
||||
template<typename Scalar>
|
||||
void PlanarRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, ei_meta_true)
|
||||
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, ei_meta_true)
|
||||
{
|
||||
if(q==Scalar(0))
|
||||
{
|
||||
@ -218,7 +218,7 @@ void PlanarRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar
|
||||
|
||||
// specialization for reals
|
||||
template<typename Scalar>
|
||||
void PlanarRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, ei_meta_false)
|
||||
void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, ei_meta_false)
|
||||
{
|
||||
|
||||
if(q==0)
|
||||
@ -267,17 +267,17 @@ void PlanarRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar
|
||||
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
*/
|
||||
template<typename VectorX, typename VectorY, typename OtherScalar>
|
||||
void ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const PlanarRotation<OtherScalar>& j);
|
||||
void ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j);
|
||||
|
||||
/** \jacobi_module
|
||||
* Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B,
|
||||
* with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$.
|
||||
*
|
||||
* \sa class PlanarRotation, MatrixBase::applyOnTheRight(), ei_apply_rotation_in_the_plane()
|
||||
* \sa class JacobiRotation, MatrixBase::applyOnTheRight(), ei_apply_rotation_in_the_plane()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherScalar>
|
||||
inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const PlanarRotation<OtherScalar>& j)
|
||||
inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j)
|
||||
{
|
||||
RowXpr x(this->row(p));
|
||||
RowXpr y(this->row(q));
|
||||
@ -288,11 +288,11 @@ inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const PlanarRo
|
||||
* Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J
|
||||
* with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$.
|
||||
*
|
||||
* \sa class PlanarRotation, MatrixBase::applyOnTheLeft(), ei_apply_rotation_in_the_plane()
|
||||
* \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), ei_apply_rotation_in_the_plane()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherScalar>
|
||||
inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const PlanarRotation<OtherScalar>& j)
|
||||
inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j)
|
||||
{
|
||||
ColXpr x(this->col(p));
|
||||
ColXpr y(this->col(q));
|
||||
@ -301,7 +301,7 @@ inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const PlanarR
|
||||
|
||||
|
||||
template<typename VectorX, typename VectorY, typename OtherScalar>
|
||||
void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const PlanarRotation<OtherScalar>& j)
|
||||
void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j)
|
||||
{
|
||||
typedef typename VectorX::Index Index;
|
||||
typedef typename VectorX::Scalar Scalar;
|
||||
|
@ -479,7 +479,7 @@ struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, tr
|
||||
static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
|
||||
{
|
||||
Scalar z;
|
||||
PlanarRotation<Scalar> rot;
|
||||
JacobiRotation<Scalar> rot;
|
||||
RealScalar n = ei_sqrt(ei_abs2(work_matrix.coeff(p,p)) + ei_abs2(work_matrix.coeff(q,p)));
|
||||
if(n==0)
|
||||
{
|
||||
@ -514,13 +514,13 @@ struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, tr
|
||||
|
||||
template<typename MatrixType, typename RealScalar, typename Index>
|
||||
void ei_real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
|
||||
PlanarRotation<RealScalar> *j_left,
|
||||
PlanarRotation<RealScalar> *j_right)
|
||||
JacobiRotation<RealScalar> *j_left,
|
||||
JacobiRotation<RealScalar> *j_right)
|
||||
{
|
||||
Matrix<RealScalar,2,2> m;
|
||||
m << ei_real(matrix.coeff(p,p)), ei_real(matrix.coeff(p,q)),
|
||||
ei_real(matrix.coeff(q,p)), ei_real(matrix.coeff(q,q));
|
||||
PlanarRotation<RealScalar> rot1;
|
||||
JacobiRotation<RealScalar> rot1;
|
||||
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
|
||||
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
|
||||
if(t == RealScalar(0))
|
||||
@ -584,7 +584,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
||||
|
||||
// perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
|
||||
ei_svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
|
||||
PlanarRotation<RealScalar> j_left, j_right;
|
||||
JacobiRotation<RealScalar> j_left, j_right;
|
||||
ei_real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
|
||||
|
||||
// accumulate resulting Jacobi rotations
|
||||
|
@ -166,7 +166,7 @@ public :
|
||||
}
|
||||
|
||||
static EIGEN_DONT_INLINE void rot(gene_vector & A, gene_vector & B, real c, real s, int N){
|
||||
ei_apply_rotation_in_the_plane(A, B, PlanarRotation<real>(c,s));
|
||||
ei_apply_rotation_in_the_plane(A, B, JacobiRotation<real>(c,s));
|
||||
}
|
||||
|
||||
static inline void atv_product(gene_matrix & A, gene_vector & B, gene_vector & X, int N){
|
||||
|
@ -233,9 +233,9 @@ int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int
|
||||
Reverse<StridedVectorType> rvx(vx);
|
||||
Reverse<StridedVectorType> rvy(vy);
|
||||
|
||||
if(*incx<0 && *incy>0) ei_apply_rotation_in_the_plane(rvx, vy, PlanarRotation<Scalar>(c,s));
|
||||
else if(*incx>0 && *incy<0) ei_apply_rotation_in_the_plane(vx, rvy, PlanarRotation<Scalar>(c,s));
|
||||
else ei_apply_rotation_in_the_plane(vx, vy, PlanarRotation<Scalar>(c,s));
|
||||
if(*incx<0 && *incy>0) ei_apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
|
||||
else if(*incx>0 && *incy<0) ei_apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
|
||||
else ei_apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s));
|
||||
|
||||
|
||||
return 0;
|
||||
@ -293,7 +293,7 @@ int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealSc
|
||||
}
|
||||
#endif
|
||||
|
||||
// PlanarRotation<Scalar> r;
|
||||
// JacobiRotation<Scalar> r;
|
||||
// r.makeGivens(a,b);
|
||||
// *c = r.c();
|
||||
// *s = r.s();
|
||||
|
@ -1,5 +1,5 @@
|
||||
Vector2f v = Vector2f::Random();
|
||||
PlanarRotation<float> G;
|
||||
JacobiRotation<float> G;
|
||||
G.makeGivens(v.x(), v.y());
|
||||
cout << "Here is the vector v:" << endl << v << endl;
|
||||
v.applyOnTheLeft(0, 1, G.adjoint());
|
||||
|
@ -1,6 +1,6 @@
|
||||
Matrix2f m = Matrix2f::Random();
|
||||
m = (m + m.adjoint()).eval();
|
||||
PlanarRotation<float> J;
|
||||
JacobiRotation<float> J;
|
||||
J.makeJacobi(m, 0, 1);
|
||||
cout << "Here is the matrix m:" << endl << m << endl;
|
||||
m.applyOnTheLeft(0, 1, J.adjoint());
|
||||
|
@ -45,7 +45,7 @@ void jacobi(const MatrixType& m = MatrixType())
|
||||
|
||||
JacobiVector v = JacobiVector::Random().normalized();
|
||||
JacobiScalar c = v.x(), s = v.y();
|
||||
PlanarRotation<JacobiScalar> rot(c, s);
|
||||
JacobiRotation<JacobiScalar> rot(c, s);
|
||||
|
||||
{
|
||||
Index p = ei_random<Index>(0, rows-1);
|
||||
|
@ -358,7 +358,7 @@ void MatrixFunction<MatrixType,1>::permuteSchur()
|
||||
template <typename MatrixType>
|
||||
void MatrixFunction<MatrixType,1>::swapEntriesInSchur(Index index)
|
||||
{
|
||||
PlanarRotation<Scalar> rotation;
|
||||
JacobiRotation<Scalar> rotation;
|
||||
rotation.makeGivens(m_T(index, index+1), m_T(index+1, index+1) - m_T(index, index));
|
||||
m_T.applyOnTheLeft(index, index+1, rotation.adjoint());
|
||||
m_T.applyOnTheRight(index, index+1, rotation);
|
||||
|
@ -201,7 +201,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(FVectorType &x)
|
||||
assert(x.size()==n); // check the caller is not cheating us
|
||||
|
||||
Index j;
|
||||
std::vector<PlanarRotation<Scalar> > v_givens(n), w_givens(n);
|
||||
std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
|
||||
|
||||
jeval = true;
|
||||
|
||||
@ -440,7 +440,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(FVectorType
|
||||
assert(x.size()==n); // check the caller is not cheating us
|
||||
|
||||
Index j;
|
||||
std::vector<PlanarRotation<Scalar> > v_givens(n), w_givens(n);
|
||||
std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
|
||||
|
||||
jeval = true;
|
||||
if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
|
||||
|
@ -18,7 +18,7 @@ void ei_qrsolv(
|
||||
Scalar temp;
|
||||
Index n = s.cols();
|
||||
Matrix< Scalar, Dynamic, 1 > wa(n);
|
||||
PlanarRotation<Scalar> givens;
|
||||
JacobiRotation<Scalar> givens;
|
||||
|
||||
/* Function Body */
|
||||
// the following will only change the lower triangular part of s, including
|
||||
|
@ -2,7 +2,7 @@
|
||||
// TODO : move this to GivensQR once there's such a thing in Eigen
|
||||
|
||||
template <typename Scalar>
|
||||
void ei_r1mpyq(DenseIndex m, DenseIndex n, Scalar *a, const std::vector<PlanarRotation<Scalar> > &v_givens, const std::vector<PlanarRotation<Scalar> > &w_givens)
|
||||
void ei_r1mpyq(DenseIndex m, DenseIndex n, Scalar *a, const std::vector<JacobiRotation<Scalar> > &v_givens, const std::vector<JacobiRotation<Scalar> > &w_givens)
|
||||
{
|
||||
typedef DenseIndex Index;
|
||||
|
||||
|
@ -3,8 +3,8 @@ template <typename Scalar>
|
||||
void ei_r1updt(
|
||||
Matrix< Scalar, Dynamic, Dynamic > &s,
|
||||
const Matrix< Scalar, Dynamic, 1> &u,
|
||||
std::vector<PlanarRotation<Scalar> > &v_givens,
|
||||
std::vector<PlanarRotation<Scalar> > &w_givens,
|
||||
std::vector<JacobiRotation<Scalar> > &v_givens,
|
||||
std::vector<JacobiRotation<Scalar> > &w_givens,
|
||||
Matrix< Scalar, Dynamic, 1> &v,
|
||||
Matrix< Scalar, Dynamic, 1> &w,
|
||||
bool *sing)
|
||||
@ -16,7 +16,7 @@ void ei_r1updt(
|
||||
const Index n = s.cols();
|
||||
Index i, j=1;
|
||||
Scalar temp;
|
||||
PlanarRotation<Scalar> givens;
|
||||
JacobiRotation<Scalar> givens;
|
||||
|
||||
// ei_r1updt had a broader usecase, but we dont use it here. And, more
|
||||
// importantly, we can not test it.
|
||||
|
@ -10,7 +10,7 @@ void ei_rwupdt(
|
||||
|
||||
const Index n = r.cols();
|
||||
assert(r.rows()>=n);
|
||||
std::vector<PlanarRotation<Scalar> > givens(n);
|
||||
std::vector<JacobiRotation<Scalar> > givens(n);
|
||||
|
||||
/* Local variables */
|
||||
Scalar temp, rowj;
|
||||
@ -29,7 +29,7 @@ void ei_rwupdt(
|
||||
|
||||
if (rowj == 0.)
|
||||
{
|
||||
givens[j] = PlanarRotation<Scalar>(1,0);
|
||||
givens[j] = JacobiRotation<Scalar>(1,0);
|
||||
continue;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user