add missing copyrights

This commit is contained in:
Gael Guennebaud 2010-09-01 12:59:38 +02:00
parent b49dde01dc
commit e0ea25fc21

View File

@ -1,3 +1,56 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
// The computeRoots function included in this is based on materials
// covered by the following copyright and license:
//
// Geometric Tools, LLC
// Copyright (c) 1998-2010
// Distributed under the Boost Software License, Version 1.0.
//
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
//
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
#include <iostream>
#include <Eigen/Core>
#include <Eigen/Eigenvalues>
@ -8,56 +61,49 @@ using namespace Eigen;
using namespace std;
template<typename Matrix, typename Roots>
inline void computeRoots (const Matrix& rkA, Roots& adRoot)
inline void computeRoots(const Matrix& m, Roots& roots)
{
typedef typename Matrix::Scalar Scalar;
const Scalar msInv3 = 1.0/3.0;
const Scalar msRoot3 = ei_sqrt(Scalar(3.0));
Scalar dA00 = rkA(0,0);
Scalar dA01 = rkA(0,1);
Scalar dA02 = rkA(0,2);
Scalar dA11 = rkA(1,1);
Scalar dA12 = rkA(1,2);
Scalar dA22 = rkA(2,2);
const Scalar s_inv3 = 1.0/3.0;
const Scalar s_sqrt3 = ei_sqrt(Scalar(3.0));
// The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
// eigenvalues are the roots to this equation, all guaranteed to be
// real-valued, because the matrix is symmetric.
Scalar dC0 = dA00*dA11*dA22 + Scalar(2)*dA01*dA02*dA12 - dA00*dA12*dA12 - dA11*dA02*dA02 - dA22*dA01*dA01;
Scalar dC1 = dA00*dA11 - dA01*dA01 + dA00*dA22 - dA02*dA02 + dA11*dA22 - dA12*dA12;
Scalar dC2 = dA00 + dA11 + dA22;
Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(0,1)*m(0,2)*m(1,2) - m(0,0)*m(1,2)*m(1,2) - m(1,1)*m(0,2)*m(0,2) - m(2,2)*m(0,1)*m(0,1);
Scalar c1 = m(0,0)*m(1,1) - m(0,1)*m(0,1) + m(0,0)*m(2,2) - m(0,2)*m(0,2) + m(1,1)*m(2,2) - m(1,2)*m(1,2);
Scalar c2 = m(0,0) + m(1,1) + m(2,2);
// Construct the parameters used in classifying the roots of the equation
// and in solving the equation for the roots in closed form.
Scalar dC2Div3 = dC2*msInv3;
Scalar dADiv3 = (dC1 - dC2*dC2Div3)*msInv3;
if (dADiv3 > Scalar(0))
dADiv3 = Scalar(0);
Scalar c2_over_3 = c2*s_inv3;
Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
if (a_over_3 > Scalar(0))
a_over_3 = Scalar(0);
Scalar dMBDiv2 = Scalar(0.5)*(dC0 + dC2Div3*(Scalar(2)*dC2Div3*dC2Div3 - dC1));
Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
Scalar dQ = dMBDiv2*dMBDiv2 + dADiv3*dADiv3*dADiv3;
if (dQ > Scalar(0))
dQ = Scalar(0);
Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
if (q > Scalar(0))
q = Scalar(0);
// Compute the eigenvalues by solving for the roots of the polynomial.
Scalar dMagnitude = ei_sqrt(-dADiv3);
Scalar dAngle = std::atan2(ei_sqrt(-dQ),dMBDiv2)*msInv3;
Scalar dCos = ei_cos(dAngle);
Scalar dSin = ei_sin(dAngle);
adRoot(0) = dC2Div3 + 2.f*dMagnitude*dCos;
adRoot(1) = dC2Div3 - dMagnitude*(dCos + msRoot3*dSin);
adRoot(2) = dC2Div3 - dMagnitude*(dCos - msRoot3*dSin);
Scalar rho = ei_sqrt(-a_over_3);
Scalar theta = std::atan2(ei_sqrt(-q),half_b)*s_inv3;
Scalar cos_theta = ei_cos(theta);
Scalar sin_theta = ei_sin(theta);
roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta;
roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);
// Sort in increasing order.
if (adRoot(0) >= adRoot(1))
std::swap(adRoot(0),adRoot(1));
if (adRoot(1) >= adRoot(2))
if (roots(0) >= roots(1))
std::swap(roots(0),roots(1));
if (roots(1) >= roots(2))
{
std::swap(adRoot(1),adRoot(2));
if (adRoot(0) >= adRoot(1))
std::swap(adRoot(0),adRoot(1));
std::swap(roots(1),roots(2));
if (roots(0) >= roots(1))
std::swap(roots(0),roots(1));
}
}
@ -65,21 +111,21 @@ template<typename Matrix, typename Vector>
void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals)
{
typedef typename Matrix::Scalar Scalar;
// Scale the matrix so its entries are in [-1,1]. The scaling is applied
// only when at least one matrix entry has magnitude larger than 1.
// Scale the matrix so its entries are in [-1,1]. The scaling is applied
// only when at least one matrix entry has magnitude larger than 1.
Scalar scale = mat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff();
scale = std::max(scale,Scalar(1));
Matrix scaledMat = mat / scale;
Scalar scale = mat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff();
scale = std::max(scale,Scalar(1));
Matrix scaledMat = mat / scale;
// Compute the eigenvalues
// scaledMat.setZero();
computeRoots(scaledMat,evals);
// Compute the eigenvalues
// scaledMat.setZero();
computeRoots(scaledMat,evals);
// compute the eigen vectors
// here we assume 3 differents eigenvalues
// compute the eigen vectors
// **here we assume 3 differents eigenvalues**
// "optimized version" which appears to be slower with gcc!
// "optimized version" which appears to be slower with gcc!
// Vector base;
// Scalar alpha, beta;
// base << scaledMat(1,0) * scaledMat(2,1),
@ -93,22 +139,22 @@ void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals)
// }
// evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized();
// naive version
Matrix tmp;
tmp = scaledMat;
tmp.diagonal().array() -= evals(0);
evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
// naive version
Matrix tmp;
tmp = scaledMat;
tmp.diagonal().array() -= evals(0);
evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
tmp = scaledMat;
tmp.diagonal().array() -= evals(1);
evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
tmp = scaledMat;
tmp.diagonal().array() -= evals(1);
evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
tmp = scaledMat;
tmp.diagonal().array() -= evals(2);
evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
// Rescale back to the original size.
evals *= scale;
tmp = scaledMat;
tmp.diagonal().array() -= evals(2);
evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
// Rescale back to the original size.
evals *= scale;
}
int main()