mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-02-17 18:09:55 +08:00
add missing copyrights
This commit is contained in:
parent
b49dde01dc
commit
e0ea25fc21
164
bench/eig33.cpp
164
bench/eig33.cpp
@ -1,3 +1,56 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
// The computeRoots function included in this is based on materials
|
||||
// covered by the following copyright and license:
|
||||
//
|
||||
// Geometric Tools, LLC
|
||||
// Copyright (c) 1998-2010
|
||||
// Distributed under the Boost Software License, Version 1.0.
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person or organization
|
||||
// obtaining a copy of the software and accompanying documentation covered by
|
||||
// this license (the "Software") to use, reproduce, display, distribute,
|
||||
// execute, and transmit the Software, and to prepare derivative works of the
|
||||
// Software, and to permit third-parties to whom the Software is furnished to
|
||||
// do so, all subject to the following:
|
||||
//
|
||||
// The copyright notices in the Software and this entire statement, including
|
||||
// the above license grant, this restriction and the following disclaimer,
|
||||
// must be included in all copies of the Software, in whole or in part, and
|
||||
// all derivative works of the Software, unless such copies or derivative
|
||||
// works are solely in the form of machine-executable object code generated by
|
||||
// a source language processor.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
|
||||
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
|
||||
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
||||
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
// DEALINGS IN THE SOFTWARE.
|
||||
|
||||
#include <iostream>
|
||||
#include <Eigen/Core>
|
||||
#include <Eigen/Eigenvalues>
|
||||
@ -8,56 +61,49 @@ using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
template<typename Matrix, typename Roots>
|
||||
inline void computeRoots (const Matrix& rkA, Roots& adRoot)
|
||||
inline void computeRoots(const Matrix& m, Roots& roots)
|
||||
{
|
||||
typedef typename Matrix::Scalar Scalar;
|
||||
const Scalar msInv3 = 1.0/3.0;
|
||||
const Scalar msRoot3 = ei_sqrt(Scalar(3.0));
|
||||
|
||||
Scalar dA00 = rkA(0,0);
|
||||
Scalar dA01 = rkA(0,1);
|
||||
Scalar dA02 = rkA(0,2);
|
||||
Scalar dA11 = rkA(1,1);
|
||||
Scalar dA12 = rkA(1,2);
|
||||
Scalar dA22 = rkA(2,2);
|
||||
const Scalar s_inv3 = 1.0/3.0;
|
||||
const Scalar s_sqrt3 = ei_sqrt(Scalar(3.0));
|
||||
|
||||
// The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
|
||||
// eigenvalues are the roots to this equation, all guaranteed to be
|
||||
// real-valued, because the matrix is symmetric.
|
||||
Scalar dC0 = dA00*dA11*dA22 + Scalar(2)*dA01*dA02*dA12 - dA00*dA12*dA12 - dA11*dA02*dA02 - dA22*dA01*dA01;
|
||||
Scalar dC1 = dA00*dA11 - dA01*dA01 + dA00*dA22 - dA02*dA02 + dA11*dA22 - dA12*dA12;
|
||||
Scalar dC2 = dA00 + dA11 + dA22;
|
||||
Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(0,1)*m(0,2)*m(1,2) - m(0,0)*m(1,2)*m(1,2) - m(1,1)*m(0,2)*m(0,2) - m(2,2)*m(0,1)*m(0,1);
|
||||
Scalar c1 = m(0,0)*m(1,1) - m(0,1)*m(0,1) + m(0,0)*m(2,2) - m(0,2)*m(0,2) + m(1,1)*m(2,2) - m(1,2)*m(1,2);
|
||||
Scalar c2 = m(0,0) + m(1,1) + m(2,2);
|
||||
|
||||
// Construct the parameters used in classifying the roots of the equation
|
||||
// and in solving the equation for the roots in closed form.
|
||||
Scalar dC2Div3 = dC2*msInv3;
|
||||
Scalar dADiv3 = (dC1 - dC2*dC2Div3)*msInv3;
|
||||
if (dADiv3 > Scalar(0))
|
||||
dADiv3 = Scalar(0);
|
||||
Scalar c2_over_3 = c2*s_inv3;
|
||||
Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
|
||||
if (a_over_3 > Scalar(0))
|
||||
a_over_3 = Scalar(0);
|
||||
|
||||
Scalar dMBDiv2 = Scalar(0.5)*(dC0 + dC2Div3*(Scalar(2)*dC2Div3*dC2Div3 - dC1));
|
||||
Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
|
||||
|
||||
Scalar dQ = dMBDiv2*dMBDiv2 + dADiv3*dADiv3*dADiv3;
|
||||
if (dQ > Scalar(0))
|
||||
dQ = Scalar(0);
|
||||
Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
|
||||
if (q > Scalar(0))
|
||||
q = Scalar(0);
|
||||
|
||||
// Compute the eigenvalues by solving for the roots of the polynomial.
|
||||
Scalar dMagnitude = ei_sqrt(-dADiv3);
|
||||
Scalar dAngle = std::atan2(ei_sqrt(-dQ),dMBDiv2)*msInv3;
|
||||
Scalar dCos = ei_cos(dAngle);
|
||||
Scalar dSin = ei_sin(dAngle);
|
||||
adRoot(0) = dC2Div3 + 2.f*dMagnitude*dCos;
|
||||
adRoot(1) = dC2Div3 - dMagnitude*(dCos + msRoot3*dSin);
|
||||
adRoot(2) = dC2Div3 - dMagnitude*(dCos - msRoot3*dSin);
|
||||
Scalar rho = ei_sqrt(-a_over_3);
|
||||
Scalar theta = std::atan2(ei_sqrt(-q),half_b)*s_inv3;
|
||||
Scalar cos_theta = ei_cos(theta);
|
||||
Scalar sin_theta = ei_sin(theta);
|
||||
roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta;
|
||||
roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
|
||||
roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);
|
||||
|
||||
// Sort in increasing order.
|
||||
if (adRoot(0) >= adRoot(1))
|
||||
std::swap(adRoot(0),adRoot(1));
|
||||
if (adRoot(1) >= adRoot(2))
|
||||
if (roots(0) >= roots(1))
|
||||
std::swap(roots(0),roots(1));
|
||||
if (roots(1) >= roots(2))
|
||||
{
|
||||
std::swap(adRoot(1),adRoot(2));
|
||||
if (adRoot(0) >= adRoot(1))
|
||||
std::swap(adRoot(0),adRoot(1));
|
||||
std::swap(roots(1),roots(2));
|
||||
if (roots(0) >= roots(1))
|
||||
std::swap(roots(0),roots(1));
|
||||
}
|
||||
}
|
||||
|
||||
@ -65,21 +111,21 @@ template<typename Matrix, typename Vector>
|
||||
void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals)
|
||||
{
|
||||
typedef typename Matrix::Scalar Scalar;
|
||||
// Scale the matrix so its entries are in [-1,1]. The scaling is applied
|
||||
// only when at least one matrix entry has magnitude larger than 1.
|
||||
// Scale the matrix so its entries are in [-1,1]. The scaling is applied
|
||||
// only when at least one matrix entry has magnitude larger than 1.
|
||||
|
||||
Scalar scale = mat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff();
|
||||
scale = std::max(scale,Scalar(1));
|
||||
Matrix scaledMat = mat / scale;
|
||||
Scalar scale = mat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff();
|
||||
scale = std::max(scale,Scalar(1));
|
||||
Matrix scaledMat = mat / scale;
|
||||
|
||||
// Compute the eigenvalues
|
||||
// scaledMat.setZero();
|
||||
computeRoots(scaledMat,evals);
|
||||
// Compute the eigenvalues
|
||||
// scaledMat.setZero();
|
||||
computeRoots(scaledMat,evals);
|
||||
|
||||
// compute the eigen vectors
|
||||
// here we assume 3 differents eigenvalues
|
||||
// compute the eigen vectors
|
||||
// **here we assume 3 differents eigenvalues**
|
||||
|
||||
// "optimized version" which appears to be slower with gcc!
|
||||
// "optimized version" which appears to be slower with gcc!
|
||||
// Vector base;
|
||||
// Scalar alpha, beta;
|
||||
// base << scaledMat(1,0) * scaledMat(2,1),
|
||||
@ -93,22 +139,22 @@ void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals)
|
||||
// }
|
||||
// evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized();
|
||||
|
||||
// naive version
|
||||
Matrix tmp;
|
||||
tmp = scaledMat;
|
||||
tmp.diagonal().array() -= evals(0);
|
||||
evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
|
||||
// naive version
|
||||
Matrix tmp;
|
||||
tmp = scaledMat;
|
||||
tmp.diagonal().array() -= evals(0);
|
||||
evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
|
||||
|
||||
tmp = scaledMat;
|
||||
tmp.diagonal().array() -= evals(1);
|
||||
evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
|
||||
tmp = scaledMat;
|
||||
tmp.diagonal().array() -= evals(1);
|
||||
evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
|
||||
|
||||
tmp = scaledMat;
|
||||
tmp.diagonal().array() -= evals(2);
|
||||
evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
|
||||
|
||||
// Rescale back to the original size.
|
||||
evals *= scale;
|
||||
tmp = scaledMat;
|
||||
tmp.diagonal().array() -= evals(2);
|
||||
evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
|
||||
|
||||
// Rescale back to the original size.
|
||||
evals *= scale;
|
||||
}
|
||||
|
||||
int main()
|
||||
|
Loading…
Reference in New Issue
Block a user