Much more convenient, less over-engineered NumTraits. Done during this KDE-Edu weekend.

This commit is contained in:
Benoit Jacob 2007-12-02 18:32:59 +00:00
parent 2fdd067d9e
commit e05f29191e
10 changed files with 193 additions and 149 deletions

View File

@ -52,7 +52,7 @@ template<typename MatrixType> class Conjugate
Scalar _read(int row, int col) const
{
return NumTraits<Scalar>::conj(m_matrix.read(row, col));
return conj(m_matrix.read(row, col));
}
protected:

View File

@ -32,7 +32,7 @@ struct DotUnroller
static void run(const Derived1 &v1, const Derived2& v2, typename Derived1::Scalar &dot)
{
DotUnroller<Index-1, Size, Derived1, Derived2>::run(v1, v2, dot);
dot += v1[Index] * NumTraits<typename Derived1::Scalar>::conj(v2[Index]);
dot += v1[Index] * conj(v2[Index]);
}
};
@ -41,7 +41,7 @@ struct DotUnroller<0, Size, Derived1, Derived2>
{
static void run(const Derived1 &v1, const Derived2& v2, typename Derived1::Scalar &dot)
{
dot = v1[0] * NumTraits<typename Derived1::Scalar>::conj(v2[0]);
dot = v1[0] * conj(v2[0]);
}
};
@ -67,9 +67,9 @@ Scalar MatrixBase<Scalar, Derived>::dot(const OtherDerived& other) const
::run(*static_cast<const Derived*>(this), other, res);
else
{
res = (*this)[0] * NumTraits<Scalar>::conj(other[0]);
res = (*this)[0] * conj(other[0]);
for(int i = 1; i < size(); i++)
res += (*this)[i]* NumTraits<Scalar>::conj(other[i]);
res += (*this)[i]* conj(other[i]);
}
return res;
}
@ -77,13 +77,13 @@ Scalar MatrixBase<Scalar, Derived>::dot(const OtherDerived& other) const
template<typename Scalar, typename Derived>
typename NumTraits<Scalar>::Real MatrixBase<Scalar, Derived>::norm2() const
{
return NumTraits<Scalar>::real(dot(*this));
return real(dot(*this));
}
template<typename Scalar, typename Derived>
typename NumTraits<Scalar>::Real MatrixBase<Scalar, Derived>::norm() const
{
return std::sqrt(norm2());
return sqrt(norm2());
}
template<typename Scalar, typename Derived>

View File

@ -56,12 +56,12 @@ bool MatrixBase<Scalar, Derived>::isMuchSmallerThan(
{
if(IsVector)
{
return(norm2() <= NumTraits<Scalar>::abs2(other) * prec * prec);
return(norm2() <= abs2(other) * prec * prec);
}
else
{
for(int i = 0; i < cols(); i++)
if(col(i).norm2() > NumTraits<Scalar>::abs2(other) * prec * prec)
if(col(i).norm2() > abs2(other) * prec * prec)
return false;
return true;
}

View File

@ -37,16 +37,16 @@ template<typename Scalar, typename Derived> class MatrixBase
template<typename OtherDerived>
bool _isApprox_helper(
const OtherDerived& other,
const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::precision()
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
) const;
bool _isMuchSmallerThan_helper(
const Scalar& other,
const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::precision()
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
) const;
template<typename OtherDerived>
bool _isMuchSmallerThan_helper(
const MatrixBase<Scalar, OtherDerived>& other,
const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::precision()
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
) const;
public:
@ -121,16 +121,16 @@ template<typename Scalar, typename Derived> class MatrixBase
template<typename OtherDerived>
bool isApprox(
const OtherDerived& other,
const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::precision()
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
) const;
bool isMuchSmallerThan(
const Scalar& other,
const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::precision()
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
) const;
template<typename OtherDerived>
bool isMuchSmallerThan(
const MatrixBase<Scalar, OtherDerived>& other,
const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::precision()
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
) const;
template<typename OtherDerived>

View File

@ -23,144 +23,176 @@
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.
#ifndef EIGEN_NUMERIC_H
#define EIGEN_NUMERIC_H
#ifndef EIGEN_NUMTRAITS_H
#define EIGEN_NUMTRAITS_H
template<typename T> struct NumTraits;
template<> struct NumTraits<int>
{
typedef int Real;
typedef double FloatingPoint;
typedef double RealFloatingPoint;
static const bool IsComplex = false;
static const bool HasFloatingPoint = false;
static int precision() { return 0; }
static int real(const int& x) { return x; }
static int imag(const int& x) { EIGEN_UNUSED(x); return 0; }
static int conj(const int& x) { return x; }
static int abs2(const int& x) { return x*x; }
static int random()
{
// "random() % n" is bad, they say, because the low-order bits are not random enough.
// However here, 21 is odd, so random() % 21 uses the high-order bits
// as well, so there's no problem.
return (std::rand() % 21) - 10;
}
static bool isMuchSmallerThan(const int& a, const int& b, const int& prec = precision())
{
EIGEN_UNUSED(b);
EIGEN_UNUSED(prec);
return a == 0;
}
static bool isApprox(const int& a, const int& b, const int& prec = precision())
{
EIGEN_UNUSED(prec);
return a == b;
}
static bool isApproxOrLessThan(const int& a, const int& b, const int& prec = precision())
{
EIGEN_UNUSED(prec);
return a <= b;
}
};
template<> struct NumTraits<float>
{
typedef float Real;
typedef float FloatingPoint;
typedef float RealFloatingPoint;
static const bool IsComplex = false;
static const bool HasFloatingPoint = true;
static float precision() { return 1e-5f; }
static float real(const float& x) { return x; }
static float imag(const float& x) { EIGEN_UNUSED(x); return 0; }
static float conj(const float& x) { return x; }
static float abs2(const float& x) { return x*x; }
static float random()
{
return std::rand() / (RAND_MAX/20.0f) - 10.0f;
}
static bool isMuchSmallerThan(const float& a, const float& b, const float& prec = precision())
{
return std::abs(a) <= std::abs(b) * prec;
}
static bool isApprox(const float& a, const float& b, const float& prec = precision())
{
return std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * prec;
}
static bool isApproxOrLessThan(const float& a, const float& b, const float& prec = precision())
{
return a <= b || isApprox(a, b, prec);
}
};
template<> struct NumTraits<double>
{
typedef double Real;
typedef double FloatingPoint;
typedef double RealFloatingPoint;
static const bool IsComplex = false;
static const bool HasFloatingPoint = true;
static double precision() { return 1e-11; }
static double real(const double& x) { return x; }
static double imag(const double& x) { EIGEN_UNUSED(x); return 0; }
static double conj(const double& x) { return x; }
static double abs2(const double& x) { return x*x; }
static double random()
{
return std::rand() / (RAND_MAX/20.0) - 10.0;
}
static bool isMuchSmallerThan(const double& a, const double& b, const double& prec = precision())
{
return std::abs(a) <= std::abs(b) * prec;
}
static bool isApprox(const double& a, const double& b, const double& prec = precision())
{
return std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * prec;
}
static bool isApproxOrLessThan(const double& a, const double& b, const double& prec = precision())
{
return a <= b || isApprox(a, b, prec);
}
};
template<typename _Real> struct NumTraits<std::complex<_Real> >
{
typedef _Real Real;
typedef std::complex<Real> Complex;
typedef std::complex<double> FloatingPoint;
typedef typename NumTraits<Real>::FloatingPoint RealFloatingPoint;
static const bool IsComplex = true;
static const bool HasFloatingPoint = NumTraits<Real>::HasFloatingPoint;
static Real precision() { return NumTraits<Real>::precision(); }
static Real real(const Complex& x) { return std::real(x); }
static Real imag(const Complex& x) { return std::imag(x); }
static Complex conj(const Complex& x) { return std::conj(x); }
static Real abs2(const Complex& x)
{ return std::norm(x); }
static Complex random()
{
return Complex(NumTraits<Real>::random(), NumTraits<Real>::random());
}
static bool isMuchSmallerThan(const Complex& a, const Complex& b, const Real& prec = precision())
{
return abs2(a) <= abs2(b) * prec * prec;
}
static bool isApprox(const Complex& a, const Complex& b, const Real& prec = precision())
{
return NumTraits<Real>::isApprox(std::real(a), std::real(b), prec)
&& NumTraits<Real>::isApprox(std::imag(a), std::imag(b), prec);
}
// isApproxOrLessThan wouldn't make sense for complex numbers
};
#endif // EIGEN_NUMERIC_H
template<typename T> inline typename NumTraits<T>::Real precision();
template<typename T> inline T random();
template<> inline int precision<int>() { return 0; }
inline int real(const int& x) { return x; }
inline int imag(const int& x) { EIGEN_UNUSED(x); return 0; }
inline int conj(const int& x) { return x; }
inline int abs(const int& x) { return std::abs(x); }
inline int abs2(const int& x) { return x*x; }
inline int sqrt(const int& x)
{
EIGEN_UNUSED(x);
// Taking the square root of integers is not allowed
// (the square root does not always exist within the integers).
// Please cast to a floating-point type.
assert(false);
}
template<> inline int random()
{
// "rand() % n" is bad, they say, because the low-order bits are not random enough.
// However here, 21 is odd, so random() % 21 uses the high-order bits
// as well, so there's no problem.
return (std::rand() % 21) - 10;
}
inline bool isMuchSmallerThan(const int& a, const int& b, const int& prec = precision<int>())
{
EIGEN_UNUSED(b);
EIGEN_UNUSED(prec);
return a == 0;
}
inline bool isApprox(const int& a, const int& b, const int& prec = precision<int>())
{
EIGEN_UNUSED(prec);
return a == b;
}
inline bool isApproxOrLessThan(const int& a, const int& b, const int& prec = precision<int>())
{
EIGEN_UNUSED(prec);
return a <= b;
}
template<> inline float precision<float>() { return 1e-5f; }
inline float real(const float& x) { return x; }
inline float imag(const float& x) { EIGEN_UNUSED(x); return 0.f; }
inline float conj(const float& x) { return x; }
inline float abs(const float& x) { return std::abs(x); }
inline float abs2(const float& x) { return x*x; }
inline float sqrt(const float& x) { return std::sqrt(x); }
template<> inline float random()
{
return std::rand() / (RAND_MAX/20.0f) - 10.0f;
}
inline bool isMuchSmallerThan(const float& a, const float& b, const float& prec = precision<float>())
{
return std::abs(a) <= std::abs(b) * prec;
}
inline bool isApprox(const float& a, const float& b, const float& prec = precision<float>())
{
return std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * prec;
}
inline bool isApproxOrLessThan(const float& a, const float& b, const float& prec = precision<float>())
{
return a <= b || isApprox(a, b, prec);
}
template<> inline double precision<double>() { return 1e-11; }
inline double real(const double& x) { return x; }
inline double imag(const double& x) { EIGEN_UNUSED(x); return 0.; }
inline double conj(const double& x) { return x; }
inline double abs(const double& x) { return std::abs(x); }
inline double abs2(const double& x) { return x*x; }
inline double sqrt(const double& x) { return std::sqrt(x); }
template<> inline double random()
{
return std::rand() / (RAND_MAX/20.0) - 10.0;
}
inline bool isMuchSmallerThan(const double& a, const double& b, const double& prec = precision<double>())
{
return std::abs(a) <= std::abs(b) * prec;
}
inline bool isApprox(const double& a, const double& b, const double& prec = precision<double>())
{
return std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * prec;
}
inline bool isApproxOrLessThan(const double& a, const double& b, const double& prec = precision<double>())
{
return a <= b || isApprox(a, b, prec);
}
template<> inline float precision<std::complex<float> >() { return precision<float>(); }
inline float real(const std::complex<float>& x) { return std::real(x); }
inline float imag(const std::complex<float>& x) { return std::imag(x); }
inline std::complex<float> conj(const std::complex<float>& x) { return std::conj(x); }
inline float abs(const std::complex<float>& x) { return std::abs(x); }
inline float abs2(const std::complex<float>& x) { return std::norm(x); }
inline std::complex<float> sqrt(const std::complex<float>& x)
{
EIGEN_UNUSED(x);
// Taking the square roots of complex numbers is not allowed,
// as this is ambiguous (there are two square roots).
// What were you trying to do?
assert(false);
}
template<> inline std::complex<float> random()
{
return std::complex<float>(random<float>(), random<float>());
}
inline bool isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b, const float& prec = precision<float>())
{
return abs2(a) <= abs2(b) * prec * prec;
}
inline bool isApprox(const std::complex<float>& a, const std::complex<float>& b, const float& prec = precision<float>())
{
return isApprox(std::real(a), std::real(b), prec)
&& isApprox(std::imag(a), std::imag(b), prec);
}
// isApproxOrLessThan wouldn't make sense for complex numbers
template<> inline double precision<std::complex<double> >() { return precision<double>(); }
inline double real(const std::complex<double>& x) { return std::real(x); }
inline double imag(const std::complex<double>& x) { return std::imag(x); }
inline std::complex<double> conj(const std::complex<double>& x) { return std::conj(x); }
inline double abs(const std::complex<double>& x) { return std::abs(x); }
inline double abs2(const std::complex<double>& x) { return std::norm(x); }
template<> inline std::complex<double> random()
{
return std::complex<double>(random<double>(), random<double>());
}
inline bool isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b, const double& prec = precision<double>())
{
return abs2(a) <= abs2(b) * prec * prec;
}
inline bool isApprox(const std::complex<double>& a, const std::complex<double>& b, const double& prec = precision<double>())
{
return isApprox(std::real(a), std::real(b), prec)
&& isApprox(std::imag(a), std::imag(b), prec);
}
// isApproxOrLessThan wouldn't make sense for complex numbers
#endif // EIGEN_NUMTRAITS_H

View File

@ -53,7 +53,7 @@ template<typename MatrixType> class Random
{
EIGEN_UNUSED(row);
EIGEN_UNUSED(col);
return NumTraits<Scalar>::random();
return random<Scalar>();
}
protected:

View File

@ -25,6 +25,8 @@
#include "main.h"
namespace Eigen {
template<typename MatrixType> void adjoint(const MatrixType& m)
{
/* this test covers the following files:
@ -49,8 +51,8 @@ template<typename MatrixType> void adjoint(const MatrixType& m)
v3 = VectorType::random(rows),
vzero = VectorType::zero(rows);
Scalar s1 = NumTraits<Scalar>::random(),
s2 = NumTraits<Scalar>::random();
Scalar s1 = random<Scalar>(),
s2 = random<Scalar>();
// check involutivity of adjoint, transpose, conjugate
QVERIFY(m1.transpose().transpose().isApprox(m1));
@ -67,28 +69,32 @@ template<typename MatrixType> void adjoint(const MatrixType& m)
QVERIFY((m1.adjoint() * m2).adjoint().isApprox(m2.adjoint() * m1));
QVERIFY((m1.transpose() * m2).conjugate().isApprox(m1.adjoint() * m2.conjugate()));
QVERIFY((s1 * m1).transpose().isApprox(s1 * m1.transpose()));
QVERIFY((s1 * m1).conjugate().isApprox(NumTraits<Scalar>::conj(s1) * m1.conjugate()));
QVERIFY((s1 * m1).adjoint().isApprox(NumTraits<Scalar>::conj(s1) * m1.adjoint()));
QVERIFY((s1 * m1).conjugate().isApprox(conj(s1) * m1.conjugate()));
QVERIFY((s1 * m1).adjoint().isApprox(conj(s1) * m1.adjoint()));
// check basic properties of dot, norm, norm2
typedef typename NumTraits<Scalar>::Real RealScalar;
QVERIFY(NumTraits<Scalar>::isApprox((s1 * v1 + s2 * v2).dot(v3), s1 * v1.dot(v3) + s2 * v2.dot(v3)));
QVERIFY(NumTraits<Scalar>::isApprox(v3.dot(s1 * v1 + s2 * v2), NumTraits<Scalar>::conj(s1) * v3.dot(v1) + NumTraits<Scalar>::conj(s2) * v3.dot(v2)));
QVERIFY(NumTraits<Scalar>::isApprox(NumTraits<Scalar>::conj(v1.dot(v2)), v2.dot(v1)));
QVERIFY(NumTraits<RealScalar>::isApprox(abs(v1.dot(v1)), v1.norm2()));
if(NumTraits<Scalar>::HasFloatingPoint) QVERIFY(NumTraits<RealScalar>::isApprox(v1.norm2(), v1.norm() * v1.norm()));
QVERIFY(NumTraits<RealScalar>::isMuchSmallerThan(abs(vzero.dot(v1)), 1));
QVERIFY(NumTraits<RealScalar>::isMuchSmallerThan(vzero.norm(), 1));
QVERIFY(isApprox((s1 * v1 + s2 * v2).dot(v3), s1 * v1.dot(v3) + s2 * v2.dot(v3)));
QVERIFY(isApprox(v3.dot(s1 * v1 + s2 * v2), conj(s1) * v3.dot(v1) + conj(s2) * v3.dot(v2)));
QVERIFY(isApprox(conj(v1.dot(v2)), v2.dot(v1)));
QVERIFY(isApprox(abs(v1.dot(v1)), v1.norm2()));
if(NumTraits<Scalar>::HasFloatingPoint)
QVERIFY(isApprox(v1.norm2(), v1.norm() * v1.norm()));
QVERIFY(isMuchSmallerThan(abs(vzero.dot(v1)), static_cast<RealScalar>(1)));
if(NumTraits<Scalar>::HasFloatingPoint)
QVERIFY(isMuchSmallerThan(vzero.norm(), static_cast<RealScalar>(1)));
// check compatibility of dot and adjoint
QVERIFY(NumTraits<Scalar>::isApprox(v1.dot(square * v2), (square.adjoint() * v1).dot(v2)));
QVERIFY(isApprox(v1.dot(square * v2), (square.adjoint() * v1).dot(v2)));
}
void EigenTest::testAdjoint()
{
adjoint(Matrix<float, 1, 1>());
adjoint(Matrix<complex<double>, 4, 4>());
adjoint(Matrix4cd());
adjoint(MatrixXcf(3, 3));
adjoint(MatrixXi(8, 12));
adjoint(MatrixXd(20, 20));
}
} // namespace Eigen

View File

@ -25,6 +25,8 @@
#include "main.h"
namespace Eigen {
template<typename MatrixType> void basicStuff(const MatrixType& m)
{
/* this test covers the following files:
@ -56,14 +58,15 @@ template<typename MatrixType> void basicStuff(const MatrixType& m)
v2 = VectorType::random(rows),
vzero = VectorType::zero(rows);
Scalar s1 = NumTraits<Scalar>::random(),
s2 = NumTraits<Scalar>::random();
Scalar s1 = random<Scalar>(),
s2 = random<Scalar>();
// test Fuzzy.h and Zero.h.
QVERIFY(v1.isApprox(v1));
QVERIFY(!v1.isApprox(2*v1));
QVERIFY(vzero.isMuchSmallerThan(v1));
QVERIFY(vzero.isMuchSmallerThan(v1.norm()));
if(NumTraits<Scalar>::HasFloatingPoint)
QVERIFY(vzero.isMuchSmallerThan(v1.norm()));
QVERIFY(!v1.isMuchSmallerThan(v1));
QVERIFY(vzero.isApprox(v1-v1));
QVERIFY(m1.isApprox(m1));
@ -134,8 +137,10 @@ template<typename MatrixType> void basicStuff(const MatrixType& m)
void EigenTest::testBasicStuff()
{
basicStuff(Matrix<float, 1, 1>());
basicStuff(Matrix<complex<double>, 4, 4>());
basicStuff(Matrix4cd());
basicStuff(MatrixXcf(3, 3));
basicStuff(MatrixXi(8, 12));
basicStuff(MatrixXd(20, 20));
}
} // namespace Eigen

View File

@ -25,13 +25,14 @@
#include "main.h"
EigenTest::EigenTest()
Eigen::EigenTest::EigenTest()
{
unsigned int t = (unsigned int) time( NULL );
unsigned int t = (unsigned int) time(NULL);
qDebug() << "Initializing random number generator with seed"
<< t;
srand(t);
}
QTEST_APPLESS_MAIN( EigenTest )
QTEST_APPLESS_MAIN(Eigen::EigenTest)
#include "main.moc"

View File

@ -29,12 +29,10 @@
#include <QtTest/QtTest>
#include "../src/Core.h"
using namespace Eigen;
#include <cstdlib>
#include <ctime>
using namespace std;
namespace Eigen {
class EigenTest : public QObject
{
@ -48,4 +46,6 @@ class EigenTest : public QObject
void testAdjoint();
};
} // end namespace Eigen
#endif // EIGEN_TEST_MAIN_H