NVCC: fix closed-form eigenvalue decomposition, workaround gcc4.7/nvcc5.5 issue

This commit is contained in:
Gael Guennebaud 2014-01-24 12:50:29 +01:00
parent 66f1c56aab
commit deab937d45
3 changed files with 36 additions and 8 deletions

View File

@ -77,7 +77,12 @@ template<typename MatrixType, int _DiagIndex> class Diagonal
EIGEN_DEVICE_FUNC
inline Index rows() const
{ return m_index.value()<0 ? (std::min<Index>)(m_matrix.cols(),m_matrix.rows()+m_index.value()) : (std::min<Index>)(m_matrix.rows(),m_matrix.cols()-m_index.value()); }
{
EIGEN_USING_STD_MATH(min);
return m_index.value()<0 ? (min)(Index(m_matrix.cols()),Index(m_matrix.rows()+m_index.value()))
: (min)(Index(m_matrix.rows()),Index(m_matrix.cols()-m_index.value()));
}
EIGEN_DEVICE_FUNC
inline Index cols() const { return 1; }

View File

@ -756,7 +756,9 @@ struct direct_selfadjoint_eigenvalues<SolverType,2,false>
EIGEN_DEVICE_FUNC
static inline void run(SolverType& solver, const MatrixType& mat, int options)
{
using std::sqrt;
EIGEN_USING_STD_MATH(max)
EIGEN_USING_STD_MATH(sqrt);
eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
eigen_assert((options&~(EigVecMask|GenEigMask))==0
&& (options&EigVecMask)!=EigVecMask
@ -768,7 +770,7 @@ struct direct_selfadjoint_eigenvalues<SolverType,2,false>
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
Scalar scale = mat.cwiseAbs().maxCoeff();
scale = (std::max)(scale,Scalar(1));
scale = (max)(scale,Scalar(1));
MatrixType scaledMat = mat / scale;
// Compute the eigenvalues

View File

@ -1,8 +1,16 @@
// workaround issue between gcc >= 4.7 and cuda 5.5
#if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7)
#undef _GLIBCXX_ATOMIC_BUILTINS
#undef _GLIBCXX_USE_INT128
#endif
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cuda_basic
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#include "main.h"
#include "cuda_common.h"
@ -70,6 +78,17 @@ struct prod {
}
};
template<typename T1, typename T2>
struct diagonal {
EIGEN_DEVICE_FUNC
void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
{
using namespace Eigen;
T1 x1(in+i);
Map<T2> res(out+i*T2::MaxSizeAtCompileTime);
res += x1.diagonal();
}
};
template<typename T>
struct eigenvalues {
@ -82,12 +101,11 @@ struct eigenvalues {
Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
T A = M*M.adjoint();
SelfAdjointEigenSolver<T> eig;
eig.computeDirect(A);
res = A.eigenvalues();
eig.computeDirect(M);
res = eig.eigenvalues();
}
};
void test_cuda_basic()
{
ei_test_init_cuda();
@ -110,7 +128,10 @@ void test_cuda_basic()
CALL_SUBTEST( run_and_compare_to_cuda(prod<Matrix3f,Matrix3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_cuda(prod<Matrix4f,Vector4f>(), nthreads, in, out) );
// CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix3f>(), nthreads, in, out) );
// CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix2f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_cuda(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_c<uda(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix3f>(), nthreads, in, out) );
CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix2f>(), nthreads, in, out) );
}