From dd8034bd1c414d7b2058d020203f5c82dc5b54b6 Mon Sep 17 00:00:00 2001 From: Chen-Pang He Date: Sat, 22 Sep 2012 17:37:14 +0800 Subject: [PATCH] Fix cost evaluation. (chain product for integral power) --- .../Eigen/src/MatrixFunctions/MatrixPower.h | 30 +++++++++++++------ .../src/MatrixFunctions/MatrixPowerBase.h | 23 ++++++++------ 2 files changed, 35 insertions(+), 18 deletions(-) diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h b/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h index ff2e31d83..2ed319641 100644 --- a/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +++ b/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h @@ -157,7 +157,7 @@ typename MatrixType::RealScalar MatrixPower::modfAndInit(RealScalar *intpart = std::floor(x); RealScalar res = x - *intpart; - if (!m_init && res) { // !init && res + if (!m_init && res) { const ComplexSchur schurOfA(m_A); m_T = schurOfA.matrixT(); m_U = schurOfA.matrixU(); @@ -209,29 +209,41 @@ template template void MatrixPower::computeIntPower(const PlainObject& b, ResultType& res, RealScalar p) { - if (b.cols() > m_A.cols()) { + if (b.cols() >= m_A.cols()) { m_tmp2 = MatrixType::Identity(m_A.rows(),m_A.cols()); computeIntPower(m_tmp2, p); res.noalias() = m_tmp2 * b; - } else { + } + else { RealScalar pp = std::abs(p); - int cost = internal::binary_powering_cost(pp); + int squarings, applyings = internal::binary_powering_cost(pp, &squarings); bool init = false; if (p==0) { res = b; return; } - if (p<0) m_tmp1 = m_A.inverse(); - else m_tmp1 = m_A; + else if (p>0) { + m_tmp1 = m_A; + } + else if (b.cols() * (pp - applyings) <= m_A.cols() * squarings) { + PartialPivLU A(m_A); + res = A.solve(b); + for (--pp; pp >= 1; --pp) + res = A.solve(res); + return; + } + else { + m_tmp1 = m_A.inverse(); + } - while (b.cols()*pp > m_A.cols()*cost) { + while (b.cols() * (pp - applyings) > m_A.cols() * squarings) { if (std::fmod(pp, 2) >= 1) { apply(b, res, init); - --cost; + --applyings; } m_tmp1 *= m_tmp1; - --cost; + --squarings; pp /= 2; } for (; pp >= 1; --pp) diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixPowerBase.h b/unsupported/Eigen/src/MatrixFunctions/MatrixPowerBase.h index e5a1fec31..eac43fa52 100644 --- a/unsupported/Eigen/src/MatrixFunctions/MatrixPowerBase.h +++ b/unsupported/Eigen/src/MatrixFunctions/MatrixPowerBase.h @@ -34,15 +34,18 @@ struct traits > : traits { }; template -inline int binary_powering_cost(T p) +inline int binary_powering_cost(T p, int* squarings) { - int cost, tmp; - frexp(p, &cost); + int applyings=0, tmp; + + if (frexp(p, squarings) != 0.5); + --*squarings; + while (std::frexp(p, &tmp), tmp > 0) { p -= std::ldexp(static_cast(0.5), tmp); - ++cost; + ++applyings; } - return cost; + return applyings; } inline int matrix_power_get_pade_degree(float normIminusT) @@ -145,7 +148,7 @@ void MatrixPowerTriangularAtomic::computePade(int degree, const RealScalar p) const { int i = degree<<1; - res = (p-(i>>1)) / ((i-1)<<1) * IminusT; + res = (p-degree) / ((i-1)<<1) * IminusT; for (--i; i; --i) { res = (MatrixType::Identity(m_T.rows(), m_T.cols()) + res).template triangularView() .solve((i==1 ? -p : i&1 ? (-p-(i>>1))/(i<<1) : (p-(i>>1))/((i-1)<<1)) * IminusT).eval(); @@ -166,9 +169,11 @@ void MatrixPowerTriangularAtomic::compute2x2(MatrixType& res, R res(i,i) = pow(m_T(i,i), p); if (m_T(i-1,i-1) == m_T(i,i)) { res(i-1,i) = p * pow(m_T(i-1,i), p-1); - } else if (2*abs(m_T(i-1,i-1)) < abs(m_T(i,i)) || 2*abs(m_T(i,i)) < abs(m_T(i-1,i-1))) { + } + else if (2*abs(m_T(i-1,i-1)) < abs(m_T(i,i)) || 2*abs(m_T(i,i)) < abs(m_T(i-1,i-1))) { res(i-1,i) = m_T(i-1,i) * (res(i,i)-res(i-1,i-1)) / (m_T(i,i)-m_T(i-1,i-1)); - } else { + } + else { // computation in previous branch is inaccurate if abs(m_T(i,i)) \approx abs(m_T(i-1,i-1)) int unwindingNumber = std::ceil(((logTdiag[i]-logTdiag[i-1]).imag() - M_PI) / (2*M_PI)); Scalar w = internal::atanh2(m_T(i,i)-m_T(i-1,i-1), m_T(i,i)+m_T(i-1,i-1)) + Scalar(0, M_PI*unwindingNumber); @@ -187,9 +192,9 @@ void MatrixPowerTriangularAtomic::computeBig(MatrixType& res, R digits <= 64? 2.4471944416607995472e-1L: // extended precision digits <= 106? 1.1016843812851143391275867258512e-01: // double-double 9.134603732914548552537150753385375e-02; // quadruple precision - int degree, degree2, numberOfSquareRoots=0, numberOfExtraSquareRoots=0; MatrixType IminusT, sqrtT, T=m_T; RealScalar normIminusT; + int degree, degree2, numberOfSquareRoots=0, numberOfExtraSquareRoots=0; while (true) { IminusT = MatrixType::Identity(m_T.rows(), m_T.cols()) - T;