Merge branch specfun.

This commit is contained in:
Eugene Brevdo 2016-03-07 15:37:12 -08:00
commit dd6dcad6c2
14 changed files with 773 additions and 9 deletions

View File

@ -78,6 +78,8 @@ struct default_packet_traits
HasDiGamma = 0, HasDiGamma = 0,
HasErf = 0, HasErf = 0,
HasErfc = 0, HasErfc = 0,
HasIGamma = 0,
HasIGammac = 0,
HasRound = 0, HasRound = 0,
HasFloor = 0, HasFloor = 0,
@ -457,6 +459,14 @@ Packet perf(const Packet& a) { using numext::erf; return erf(a); }
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet perfc(const Packet& a) { using numext::erfc; return erfc(a); } Packet perfc(const Packet& a) { using numext::erfc; return erfc(a); }
/** \internal \returns the incomplete gamma function igamma(\a a, \a x) */
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Packet pigamma(const Packet& a, const Packet& x) { using numext::igamma; return igamma(a, x); }
/** \internal \returns the complementary incomplete gamma function igammac(\a a, \a x) */
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Packet pigammac(const Packet& a, const Packet& x) { using numext::igammac; return igammac(a, x); }
/*************************************************************************** /***************************************************************************
* The following functions might not have to be overwritten for vectorized types * The following functions might not have to be overwritten for vectorized types
***************************************************************************/ ***************************************************************************/

View File

@ -129,6 +129,36 @@ namespace Eigen
); );
} }
/** \returns an expression of the coefficient-wise igamma(\a a, \a x) to the given arrays.
*
* This function computes the coefficient-wise incomplete gamma function.
*
*/
template<typename Derived,typename ExponentDerived>
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
igamma(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x)
{
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
a.derived(),
x.derived()
);
}
/** \returns an expression of the coefficient-wise igammac(\a a, \a x) to the given arrays.
*
* This function computes the coefficient-wise complementary incomplete gamma function.
*
*/
template<typename Derived,typename ExponentDerived>
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
igammac(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x)
{
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
a.derived(),
x.derived()
);
}
namespace internal namespace internal
{ {
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op) EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op)

View File

@ -95,6 +95,11 @@ template<typename T> struct GenericNumTraits
static inline T infinity() { static inline T infinity() {
return numext::numeric_limits<T>::infinity(); return numext::numeric_limits<T>::infinity();
} }
EIGEN_DEVICE_FUNC
static inline T quiet_NaN() {
return numext::numeric_limits<T>::quiet_NaN();
}
}; };
template<typename T> struct NumTraits : GenericNumTraits<T> template<typename T> struct NumTraits : GenericNumTraits<T>

View File

@ -283,7 +283,7 @@ struct digamma_impl {
Scalar p, q, nz, s, w, y; Scalar p, q, nz, s, w, y;
bool negative; bool negative;
const Scalar maxnum = numext::numeric_limits<Scalar>::infinity(); const Scalar maxnum = NumTraits<Scalar>::infinity();
const Scalar m_pi = 3.14159265358979323846; const Scalar m_pi = 3.14159265358979323846;
negative = 0; negative = 0;
@ -296,7 +296,8 @@ struct digamma_impl {
if (x <= zero) { if (x <= zero) {
negative = one; negative = one;
q = x; q = x;
p = ::floor(q); using std::floor;
p = floor(q);
if (p == q) { if (p == q) {
return maxnum; return maxnum;
} }
@ -309,7 +310,8 @@ struct digamma_impl {
p += one; p += one;
nz = q - p; nz = q - p;
} }
nz = m_pi / ::tan(m_pi * nz); using std::tan;
nz = m_pi / tan(m_pi * nz);
} }
else { else {
nz = zero; nz = zero;
@ -327,7 +329,8 @@ struct digamma_impl {
y = digamma_impl_maybe_poly<Scalar>::run(s); y = digamma_impl_maybe_poly<Scalar>::run(s);
y = ::log(s) - (half / s) - y - w; using std::log;
y = log(s) - (half / s) - y - w;
return (negative) ? y - nz : y; return (negative) ? y - nz : y;
} }
@ -401,6 +404,332 @@ struct erfc_impl<double> {
}; };
#endif // EIGEN_HAS_C99_MATH #endif // EIGEN_HAS_C99_MATH
/****************************************************************************
* Implementation of igammac (complemented incomplete gamma integral) *
****************************************************************************/
template <typename Scalar>
struct igammac_retval {
typedef Scalar type;
};
#ifndef EIGEN_HAS_C99_MATH
template <typename Scalar>
struct igammac_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar a, Scalar x) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
return Scalar(0);
}
};
#else
template <typename Scalar> struct igamma_impl; // predeclare igamma_impl
template <typename Scalar>
struct igamma_helper {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static Scalar big() { assert(false && "big not supported for this type"); return 0.0; }
};
template <>
struct igamma_helper<float> {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static float machep() {
return NumTraits<float>::epsilon() / 2; // 1.0 - machep == 1.0
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static float big() {
// use epsneg (1.0 - epsneg == 1.0)
return 1.0 / (NumTraits<float>::epsilon() / 2);
}
};
template <>
struct igamma_helper<double> {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static double machep() {
return NumTraits<double>::epsilon() / 2; // 1.0 - machep == 1.0
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static double big() {
return 1.0 / NumTraits<double>::epsilon();
}
};
template <typename Scalar>
struct igammac_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar a, Scalar x) {
/* igamc()
*
* Incomplete gamma integral (modified for Eigen)
*
*
*
* SYNOPSIS:
*
* double a, x, y, igamc();
*
* y = igamc( a, x );
*
* DESCRIPTION:
*
* The function is defined by
*
*
* igamc(a,x) = 1 - igam(a,x)
*
* inf.
* -
* 1 | | -t a-1
* = ----- | e t dt.
* - | |
* | (a) -
* x
*
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of a and x.
*
* ACCURACY (float):
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,30 30000 7.8e-6 5.9e-7
*
*
* ACCURACY (double):
*
* Tested at random a, x.
* a x Relative error:
* arithmetic domain domain # trials peak rms
* IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
* IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
*
*/
/*
Cephes Math Library Release 2.2: June, 1992
Copyright 1985, 1987, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
using std::log;
const Scalar zero = 0;
const Scalar one = 1;
const Scalar two = 2;
const Scalar machep = igamma_helper<Scalar>::machep();
const Scalar maxlog = log(NumTraits<Scalar>::highest());
const Scalar big = igamma_helper<Scalar>::big();
const Scalar biginv = 1 / big;
const Scalar nan = NumTraits<Scalar>::quiet_NaN();
const Scalar inf = NumTraits<Scalar>::infinity();
Scalar ans, ax, c, yc, r, t, y, z;
Scalar pk, pkm1, pkm2, qk, qkm1, qkm2;
if ((x < zero) || ( a <= zero)) {
// domain error
return nan;
}
if ((x < one) || (x < a)) {
return (one - igamma_impl<Scalar>::run(a, x));
}
if (x == inf) return zero; // std::isinf crashes on CUDA
/* Compute x**a * exp(-x) / gamma(a) */
ax = a * log(x) - x - lgamma_impl<Scalar>::run(a);
if (ax < -maxlog) { // underflow
return zero;
}
using std::exp;
ax = exp(ax);
// continued fraction
y = one - a;
z = x + y + one;
c = zero;
pkm2 = one;
qkm2 = x;
pkm1 = x + one;
qkm1 = z * x;
ans = pkm1 / qkm1;
using std::abs;
while (true) {
c += one;
y += one;
z += two;
yc = y * c;
pk = pkm1 * z - pkm2 * yc;
qk = qkm1 * z - qkm2 * yc;
if (qk != zero) {
r = pk / qk;
t = abs((ans - r) / r);
ans = r;
} else {
t = one;
}
pkm2 = pkm1;
pkm1 = pk;
qkm2 = qkm1;
qkm1 = qk;
if (abs(pk) > big) {
pkm2 *= biginv;
pkm1 *= biginv;
qkm2 *= biginv;
qkm1 *= biginv;
}
if (t <= machep) break;
}
return (ans * ax);
}
};
#endif // EIGEN_HAS_C99_MATH
/****************************************************************************
* Implementation of igamma (incomplete gamma integral) *
****************************************************************************/
template <typename Scalar>
struct igamma_retval {
typedef Scalar type;
};
#ifndef EIGEN_HAS_C99_MATH
template <typename Scalar>
struct igamma_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar a, Scalar x) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
return Scalar(0);
}
};
#else
template <typename Scalar>
struct igamma_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar a, Scalar x) {
/* igam()
* Incomplete gamma integral
*
*
*
* SYNOPSIS:
*
* double a, x, y, igam();
*
* y = igam( a, x );
*
* DESCRIPTION:
*
* The function is defined by
*
* x
* -
* 1 | | -t a-1
* igam(a,x) = ----- | e t dt.
* - | |
* | (a) -
* 0
*
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of a and x.
*
* ACCURACY (double):
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,30 200000 3.6e-14 2.9e-15
* IEEE 0,100 300000 9.9e-14 1.5e-14
*
*
* ACCURACY (float):
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,30 20000 7.8e-6 5.9e-7
*
*/
/*
Cephes Math Library Release 2.2: June, 1992
Copyright 1985, 1987, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/* left tail of incomplete gamma function:
*
* inf. k
* a -x - x
* x e > ----------
* - -
* k=0 | (a+k+1)
*
*/
using std::log;
const Scalar zero = 0;
const Scalar one = 1;
const Scalar machep = igamma_helper<Scalar>::machep();
const Scalar maxlog = log(NumTraits<Scalar>::highest());
const Scalar nan = NumTraits<Scalar>::quiet_NaN();
double ans, ax, c, r;
if (x == zero) return zero;
if ((x < zero) || ( a <= zero)) { // domain error
return nan;
}
if ((x > one) && (x > a)) {
return (one - igammac_impl<Scalar>::run(a, x));
}
/* Compute x**a * exp(-x) / gamma(a) */
ax = a * log(x) - x - lgamma_impl<Scalar>::run(a);
if (ax < -maxlog) {
// underflow
return zero;
}
using std::exp;
ax = exp(ax);
/* power series */
r = a;
c = one;
ans = one;
while (true) {
r += one;
c *= x/r;
ans += c;
if (c/ans <= machep) break;
}
return (ans * ax / a);
}
};
#endif // EIGEN_HAS_C99_MATH
} // end namespace internal } // end namespace internal
namespace numext { namespace numext {
@ -429,8 +758,21 @@ EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar)
return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x); return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x);
} }
template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar)
igamma(const Scalar& a, const Scalar& x) {
return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x);
}
template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar)
igammac(const Scalar& a, const Scalar& x) {
return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x);
}
} // end namespace numext } // end namespace numext
} // end namespace Eigen } // end namespace Eigen
#endif // EIGEN_SPECIAL_FUNCTIONS_H #endif // EIGEN_SPECIAL_FUNCTIONS_H

View File

@ -117,6 +117,42 @@ double2 perfc<double2>(const double2& a)
} }
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
float4 pigamma<float4>(const float4& a, const float4& x)
{
using numext::igamma;
return make_float4(
igamma(a.x, x.x),
igamma(a.y, x.y),
igamma(a.z, x.z),
igamma(a.w, x.w));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
double2 pigamma<double2>(const double2& a, const double2& x)
{
using numext::igamma;
return make_double2(igamma(a.x, x.x), igamma(a.y, x.y));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
float4 pigammac<float4>(const float4& a, const float4& x)
{
using numext::igammac;
return make_float4(
igammac(a.x, x.x),
igammac(a.y, x.y),
igammac(a.z, x.z),
igammac(a.w, x.w));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
double2 pigammac<double2>(const double2& a, const double2& x)
{
using numext::igammac;
return make_double2(igammac(a.x, x.x), igammac(a.y, x.y));
}
#endif #endif
} // end namespace internal } // end namespace internal

View File

@ -43,6 +43,8 @@ template<> struct packet_traits<float> : default_packet_traits
HasDiGamma = 1, HasDiGamma = 1,
HasErf = 1, HasErf = 1,
HasErfc = 1, HasErfc = 1,
HasIgamma = 1,
HasIGammac = 1,
HasBlend = 0, HasBlend = 0,
}; };
@ -67,6 +69,8 @@ template<> struct packet_traits<double> : default_packet_traits
HasDiGamma = 1, HasDiGamma = 1,
HasErf = 1, HasErf = 1,
HasErfc = 1, HasErfc = 1,
HasIGamma = 1,
HasIGammac = 1,
HasBlend = 0, HasBlend = 0,
}; };
@ -280,7 +284,6 @@ template<> EIGEN_DEVICE_FUNC inline double2 pabs<double2>(const double2& a) {
return make_double2(fabs(a.x), fabs(a.y)); return make_double2(fabs(a.x), fabs(a.y));
} }
EIGEN_DEVICE_FUNC inline void EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<float4,4>& kernel) { ptranspose(PacketBlock<float4,4>& kernel) {
double tmp = kernel.packet[0].y; double tmp = kernel.packet[0].y;

View File

@ -337,6 +337,55 @@ template<> struct functor_traits<scalar_boolean_or_op> {
}; };
}; };
/** \internal
* \brief Template functor to compute the incomplete gamma function igamma(a, x)
*
* \sa class CwiseBinaryOp, Cwise::igamma
*/
template<typename Scalar> struct scalar_igamma_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_igamma_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& x) const {
using numext::igamma; return igamma(a, x);
}
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const {
return internal::pigammac(a, x);
}
};
template<typename Scalar>
struct functor_traits<scalar_igamma_op<Scalar> > {
enum {
// Guesstimate
Cost = 20 * NumTraits<Scalar>::MulCost + 10 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasIGamma
};
};
/** \internal
* \brief Template functor to compute the complementary incomplete gamma function igammac(a, x)
*
* \sa class CwiseBinaryOp, Cwise::igammac
*/
template<typename Scalar> struct scalar_igammac_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_igammac_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& x) const {
using numext::igammac; return igammac(a, x);
}
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const
{
return internal::pigammac(a, x);
}
};
template<typename Scalar>
struct functor_traits<scalar_igammac_op<Scalar> > {
enum {
// Guesstimate
Cost = 20 * NumTraits<Scalar>::MulCost + 10 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasIGammac
};
};
//---------- binary functors bound to a constant, thus appearing as a unary functor ---------- //---------- binary functors bound to a constant, thus appearing as a unary functor ----------

View File

@ -206,6 +206,8 @@ template<typename Scalar> struct scalar_add_op;
template<typename Scalar> struct scalar_constant_op; template<typename Scalar> struct scalar_constant_op;
template<typename Scalar> struct scalar_identity_op; template<typename Scalar> struct scalar_identity_op;
template<typename Scalar,bool iscpx> struct scalar_sign_op; template<typename Scalar,bool iscpx> struct scalar_sign_op;
template<typename Scalar> struct scalar_igamma_op;
template<typename Scalar> struct scalar_igammac_op;
template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_product_op; template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_product_op;
template<typename LhsScalar,typename RhsScalar> struct scalar_multiple2_op; template<typename LhsScalar,typename RhsScalar> struct scalar_multiple2_op;

View File

@ -148,6 +148,7 @@ template<typename T> struct numeric_limits
static T (max)() { assert(false && "Highest not supported for this type"); } static T (max)() { assert(false && "Highest not supported for this type"); }
static T (min)() { assert(false && "Lowest not supported for this type"); } static T (min)() { assert(false && "Lowest not supported for this type"); }
static T infinity() { assert(false && "Infinity not supported for this type"); } static T infinity() { assert(false && "Infinity not supported for this type"); }
static T quiet_NaN() { assert(false && "quiet_NaN not supported for this type"); }
}; };
template<> struct numeric_limits<float> template<> struct numeric_limits<float>
{ {
@ -159,6 +160,8 @@ template<> struct numeric_limits<float>
static float (min)() { return FLT_MIN; } static float (min)() { return FLT_MIN; }
EIGEN_DEVICE_FUNC EIGEN_DEVICE_FUNC
static float infinity() { return CUDART_INF_F; } static float infinity() { return CUDART_INF_F; }
EIGEN_DEVICE_FUNC
static float quiet_NaN() { return CUDART_NAN_F; }
}; };
template<> struct numeric_limits<double> template<> struct numeric_limits<double>
{ {
@ -170,6 +173,8 @@ template<> struct numeric_limits<double>
static double (min)() { return DBL_MIN; } static double (min)() { return DBL_MIN; }
EIGEN_DEVICE_FUNC EIGEN_DEVICE_FUNC
static double infinity() { return CUDART_INF; } static double infinity() { return CUDART_INF; }
EIGEN_DEVICE_FUNC
static double quiet_NaN() { return CUDART_NAN; }
}; };
template<> struct numeric_limits<int> template<> struct numeric_limits<int>
{ {

View File

@ -19,12 +19,15 @@ macro(ei_add_test_internal testname testname_with_suffix)
endif() endif()
if(EIGEN_ADD_TEST_FILENAME_EXTENSION STREQUAL cu) if(EIGEN_ADD_TEST_FILENAME_EXTENSION STREQUAL cu)
cuda_add_executable(${targetname} ${filename}) if (${ARGC} GREATER 2)
cuda_add_executable(${targetname} ${filename} OPTIONS ${ARGV2})
else()
cuda_add_executable(${targetname} ${filename})
endif()
else() else()
add_executable(${targetname} ${filename}) add_executable(${targetname} ${filename})
endif() endif()
if (targetname MATCHES "^eigen2_") if (targetname MATCHES "^eigen2_")
add_dependencies(eigen2_buildtests ${targetname}) add_dependencies(eigen2_buildtests ${targetname})
else() else()

View File

@ -295,7 +295,6 @@ template<typename ArrayType> void array_real(const ArrayType& m)
VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square()); VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square());
VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square()); VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square());
VERIFY_IS_APPROX(pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0))); VERIFY_IS_APPROX(pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0)));
VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
@ -305,6 +304,14 @@ template<typename ArrayType> void array_real(const ArrayType& m)
VERIFY_IS_APPROX(log10(m3), log(m3)/log(10)); VERIFY_IS_APPROX(log10(m3), log(m3)/log(10));
// Smoke test to check any compilation issues
ArrayType m1_abs_p1 = m1.abs() + 1;
ArrayType m2_abs_p1 = m2.abs() + 1;
VERIFY_IS_APPROX(Eigen::igamma(m1_abs_p1, m2_abs_p1), Eigen::igamma(m1_abs_p1, m2_abs_p1));
VERIFY_IS_APPROX(Eigen::igammac(m1_abs_p1, m2_abs_p1), Eigen::igammac(m1_abs_p1, m2_abs_p1));
VERIFY_IS_APPROX(Eigen::igamma(m2_abs_p1, m1_abs_p1), Eigen::igamma(m2_abs_p1, m1_abs_p1));
VERIFY_IS_APPROX(Eigen::igammac(m2_abs_p1, m1_abs_p1), Eigen::igammac(m2_abs_p1, m1_abs_p1));
// scalar by array division // scalar by array division
const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon()); const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
s1 += Scalar(tiny); s1 += Scalar(tiny);
@ -323,6 +330,48 @@ template<typename ArrayType> void array_real(const ArrayType& m)
std::numeric_limits<RealScalar>::infinity()); std::numeric_limits<RealScalar>::infinity());
VERIFY_IS_EQUAL(numext::digamma(Scalar(-1)), VERIFY_IS_EQUAL(numext::digamma(Scalar(-1)),
std::numeric_limits<RealScalar>::infinity()); std::numeric_limits<RealScalar>::infinity());
Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
// location i*6+j corresponds to a_s[i], x_s[j].
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
Scalar igamma_s[][6] = {{0.0, nan, nan, nan, nan, nan},
{0.0, 0.6321205588285578, 0.7768698398515702,
0.9816843611112658, 9.999500016666262e-05, 1.0},
{0.0, 0.4275932955291202, 0.608374823728911,
0.9539882943107686, 7.522076445089201e-07, 1.0},
{0.0, 0.01898815687615381, 0.06564245437845008,
0.5665298796332909, 4.166333347221828e-18, 1.0},
{0.0, 0.9999780593618628, 0.9999899967080838,
0.9999996219837988, 0.9991370418689945, 1.0},
{0.0, 0.0, 0.0, 0.0, 0.0, 0.5042041932513908}};
Scalar igammac_s[][6] = {{nan, nan, nan, nan, nan, nan},
{1.0, 0.36787944117144233, 0.22313016014842982,
0.018315638888734182, 0.9999000049998333, 0.0},
{1.0, 0.5724067044708798, 0.3916251762710878,
0.04601170568923136, 0.9999992477923555, 0.0},
{1.0, 0.9810118431238462, 0.9343575456215499,
0.4334701203667089, 1.0, 0.0},
{1.0, 2.1940638138146658e-05, 1.0003291916285e-05,
3.7801620118431334e-07, 0.0008629581310054535,
0.0},
{1.0, 1.0, 1.0, 1.0, 1.0, 0.49579580674813944}};
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
if ((std::isnan)(igamma_s[i][j])) {
VERIFY((std::isnan)(numext::igamma(a_s[i], x_s[j])));
} else {
VERIFY_IS_APPROX(numext::igamma(a_s[i], x_s[j]), igamma_s[i][j]);
}
if ((std::isnan)(igammac_s[i][j])) {
VERIFY((std::isnan)(numext::igammac(a_s[i], x_s[j])));
} else {
VERIFY_IS_APPROX(numext::igammac(a_s[i], x_s[j]), igammac_s[i][j]);
}
}
}
} }
#endif // EIGEN_HAS_C99_MATH #endif // EIGEN_HAS_C99_MATH

View File

@ -315,12 +315,27 @@ class TensorBase<Derived, ReadOnlyAccessors>
operator==(const OtherDerived& other) const { operator==(const OtherDerived& other) const {
return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, internal::cmp_EQ>()); return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, internal::cmp_EQ>());
} }
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_NEQ>, const Derived, const OtherDerived> const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_NEQ>, const Derived, const OtherDerived>
operator!=(const OtherDerived& other) const { operator!=(const OtherDerived& other) const {
return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, internal::cmp_NEQ>()); return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, internal::cmp_NEQ>());
} }
// igamma(a = this, x = other)
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<internal::scalar_igamma_op<Scalar>, const Derived, const OtherDerived>
igamma(const OtherDerived& other) const {
return binaryExpr(other.derived(), internal::scalar_igamma_op<Scalar>());
}
// igammac(a = this, x = other)
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<internal::scalar_igammac_op<Scalar>, const Derived, const OtherDerived>
igammac(const OtherDerived& other) const {
return binaryExpr(other.derived(), internal::scalar_igammac_op<Scalar>());
}
// comparisons and tests for Scalars // comparisons and tests for Scalars
EIGEN_DEVICE_FUNC EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_LT>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> > EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_LT>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >

View File

@ -1,3 +1,17 @@
# generate split test header file only if it does not yet exist
# in order to prevent a rebuild everytime cmake is configured
if(NOT EXISTS ${CMAKE_CURRENT_BINARY_DIR}/split_test_helper.h)
file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/split_test_helper.h "")
foreach(i RANGE 1 999)
file(APPEND ${CMAKE_CURRENT_BINARY_DIR}/split_test_helper.h
"#ifdef EIGEN_TEST_PART_${i}\n"
"#define CALL_SUBTEST_${i}(FUNC) CALL_SUBTEST(FUNC)\n"
"#else\n"
"#define CALL_SUBTEST_${i}(FUNC)\n"
"#endif\n\n"
)
endforeach()
endif()
set_property(GLOBAL PROPERTY EIGEN_CURRENT_SUBPROJECT "Unsupported") set_property(GLOBAL PROPERTY EIGEN_CURRENT_SUBPROJECT "Unsupported")
add_custom_target(BuildUnsupported) add_custom_target(BuildUnsupported)
@ -158,7 +172,7 @@ endif()
# These tests needs nvcc # These tests needs nvcc
find_package(CUDA 7.0) find_package(CUDA 7.0)
if(CUDA_FOUND) if(CUDA_FOUND)
set(CUDA_PROPAGATE_HOST_FLAGS OFF) # set(CUDA_PROPAGATE_HOST_FLAGS OFF)
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang") if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")
set(CUDA_NVCC_FLAGS "-ccbin /usr/bin/clang" CACHE STRING "nvcc flags" FORCE) set(CUDA_NVCC_FLAGS "-ccbin /usr/bin/clang" CACHE STRING "nvcc flags" FORCE)
endif() endif()

View File

@ -574,6 +574,191 @@ void test_cuda_lgamma(const Scalar stddev)
cudaFree(d_out); cudaFree(d_out);
} }
template <typename Scalar>
void test_cuda_digamma()
{
Tensor<Scalar, 1> in(7);
Tensor<Scalar, 1> out(7);
Tensor<Scalar, 1> expected_out(7);
out.setZero();
in(0) = Scalar(1);
in(1) = Scalar(1.5);
in(2) = Scalar(4);
in(3) = Scalar(-10.5);
in(4) = Scalar(10000.5);
in(5) = Scalar(0);
in(6) = Scalar(-1);
expected_out(0) = Scalar(-0.5772156649015329);
expected_out(1) = Scalar(0.03648997397857645);
expected_out(2) = Scalar(1.2561176684318);
expected_out(3) = Scalar(2.398239129535781);
expected_out(4) = Scalar(9.210340372392849);
expected_out(5) = std::numeric_limits<Scalar>::infinity();
expected_out(6) = std::numeric_limits<Scalar>::infinity();
std::size_t bytes = in.size() * sizeof(Scalar);
Scalar* d_in;
Scalar* d_out;
cudaMalloc((void**)(&d_in), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in(d_in, 7);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 7);
gpu_out.device(gpu_device) = gpu_in.digamma();
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 5; ++i) {
VERIFY_IS_APPROX(out(i), expected_out(i));
}
for (int i = 5; i < 7; ++i) {
VERIFY_IS_EQUAL(out(i), expected_out(i));
}
}
template <typename Scalar>
void test_cuda_igamma()
{
Tensor<Scalar, 2> a(6, 6);
Tensor<Scalar, 2> x(6, 6);
Tensor<Scalar, 2> out(6, 6);
out.setZero();
Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
a(i, j) = a_s[i];
x(i, j) = x_s[j];
}
}
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
Scalar igamma_s[][6] = {{0.0, nan, nan, nan, nan, nan},
{0.0, 0.6321205588285578, 0.7768698398515702,
0.9816843611112658, 9.999500016666262e-05, 1.0},
{0.0, 0.4275932955291202, 0.608374823728911,
0.9539882943107686, 7.522076445089201e-07, 1.0},
{0.0, 0.01898815687615381, 0.06564245437845008,
0.5665298796332909, 4.166333347221828e-18, 1.0},
{0.0, 0.9999780593618628, 0.9999899967080838,
0.9999996219837988, 0.9991370418689945, 1.0},
{0.0, 0.0, 0.0, 0.0, 0.0, 0.5042041932513908}};
std::size_t bytes = a.size() * sizeof(Scalar);
Scalar* d_a;
Scalar* d_x;
Scalar* d_out;
cudaMalloc((void**)(&d_a), bytes);
cudaMalloc((void**)(&d_x), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_a, a.data(), bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_x, x.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_a(d_a, 6, 6);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_x(d_x, 6, 6);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 6, 6);
gpu_out.device(gpu_device) = gpu_a.igamma(gpu_x);
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
if ((std::isnan)(igamma_s[i][j])) {
VERIFY((std::isnan)(out(i, j)));
} else {
VERIFY_IS_APPROX(out(i, j), igamma_s[i][j]);
}
}
}
}
template <typename Scalar>
void test_cuda_igammac()
{
Tensor<Scalar, 2> a(6, 6);
Tensor<Scalar, 2> x(6, 6);
Tensor<Scalar, 2> out(6, 6);
out.setZero();
Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
a(i, j) = a_s[i];
x(i, j) = x_s[j];
}
}
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
Scalar igammac_s[][6] = {{nan, nan, nan, nan, nan, nan},
{1.0, 0.36787944117144233, 0.22313016014842982,
0.018315638888734182, 0.9999000049998333, 0.0},
{1.0, 0.5724067044708798, 0.3916251762710878,
0.04601170568923136, 0.9999992477923555, 0.0},
{1.0, 0.9810118431238462, 0.9343575456215499,
0.4334701203667089, 1.0, 0.0},
{1.0, 2.1940638138146658e-05, 1.0003291916285e-05,
3.7801620118431334e-07, 0.0008629581310054535,
0.0},
{1.0, 1.0, 1.0, 1.0, 1.0, 0.49579580674813944}};
std::size_t bytes = a.size() * sizeof(Scalar);
Scalar* d_a;
Scalar* d_x;
Scalar* d_out;
cudaMalloc((void**)(&d_a), bytes);
cudaMalloc((void**)(&d_x), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_a, a.data(), bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_x, x.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_a(d_a, 6, 6);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_x(d_x, 6, 6);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 6, 6);
gpu_out.device(gpu_device) = gpu_a.igammac(gpu_x);
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
if ((std::isnan)(igammac_s[i][j])) {
VERIFY((std::isnan)(out(i, j)));
} else {
VERIFY_IS_APPROX(out(i, j), igammac_s[i][j]);
}
}
}
}
template <typename Scalar> template <typename Scalar>
void test_cuda_erf(const Scalar stddev) void test_cuda_erf(const Scalar stddev)
{ {
@ -667,30 +852,46 @@ void test_cxx11_tensor_cuda()
CALL_SUBTEST_3(test_cuda_convolution_2d<RowMajor>()); CALL_SUBTEST_3(test_cuda_convolution_2d<RowMajor>());
CALL_SUBTEST_3(test_cuda_convolution_3d<ColMajor>()); CALL_SUBTEST_3(test_cuda_convolution_3d<ColMajor>());
CALL_SUBTEST_3(test_cuda_convolution_3d<RowMajor>()); CALL_SUBTEST_3(test_cuda_convolution_3d<RowMajor>());
CALL_SUBTEST_4(test_cuda_lgamma<float>(1.0f)); CALL_SUBTEST_4(test_cuda_lgamma<float>(1.0f));
CALL_SUBTEST_4(test_cuda_lgamma<float>(100.0f)); CALL_SUBTEST_4(test_cuda_lgamma<float>(100.0f));
CALL_SUBTEST_4(test_cuda_lgamma<float>(0.01f)); CALL_SUBTEST_4(test_cuda_lgamma<float>(0.01f));
CALL_SUBTEST_4(test_cuda_lgamma<float>(0.001f)); CALL_SUBTEST_4(test_cuda_lgamma<float>(0.001f));
CALL_SUBTEST_4(test_cuda_digamma<float>());
CALL_SUBTEST_4(test_cuda_erf<float>(1.0f)); CALL_SUBTEST_4(test_cuda_erf<float>(1.0f));
CALL_SUBTEST_4(test_cuda_erf<float>(100.0f)); CALL_SUBTEST_4(test_cuda_erf<float>(100.0f));
CALL_SUBTEST_4(test_cuda_erf<float>(0.01f)); CALL_SUBTEST_4(test_cuda_erf<float>(0.01f));
CALL_SUBTEST_4(test_cuda_erf<float>(0.001f)); CALL_SUBTEST_4(test_cuda_erf<float>(0.001f));
CALL_SUBTEST_4(test_cuda_erfc<float>(1.0f)); CALL_SUBTEST_4(test_cuda_erfc<float>(1.0f));
// CALL_SUBTEST(test_cuda_erfc<float>(100.0f)); // CALL_SUBTEST(test_cuda_erfc<float>(100.0f));
CALL_SUBTEST_4(test_cuda_erfc<float>(5.0f)); // CUDA erfc lacks precision for large inputs CALL_SUBTEST_4(test_cuda_erfc<float>(5.0f)); // CUDA erfc lacks precision for large inputs
CALL_SUBTEST_4(test_cuda_erfc<float>(0.01f)); CALL_SUBTEST_4(test_cuda_erfc<float>(0.01f));
CALL_SUBTEST_4(test_cuda_erfc<float>(0.001f)); CALL_SUBTEST_4(test_cuda_erfc<float>(0.001f));
CALL_SUBTEST_4(test_cuda_lgamma<double>(1.0)); CALL_SUBTEST_4(test_cuda_lgamma<double>(1.0));
CALL_SUBTEST_4(test_cuda_lgamma<double>(100.0)); CALL_SUBTEST_4(test_cuda_lgamma<double>(100.0));
CALL_SUBTEST_4(test_cuda_lgamma<double>(0.01)); CALL_SUBTEST_4(test_cuda_lgamma<double>(0.01));
CALL_SUBTEST_4(test_cuda_lgamma<double>(0.001)); CALL_SUBTEST_4(test_cuda_lgamma<double>(0.001));
CALL_SUBTEST_4(test_cuda_digamma<double>());
CALL_SUBTEST_4(test_cuda_erf<double>(1.0)); CALL_SUBTEST_4(test_cuda_erf<double>(1.0));
CALL_SUBTEST_4(test_cuda_erf<double>(100.0)); CALL_SUBTEST_4(test_cuda_erf<double>(100.0));
CALL_SUBTEST_4(test_cuda_erf<double>(0.01)); CALL_SUBTEST_4(test_cuda_erf<double>(0.01));
CALL_SUBTEST_4(test_cuda_erf<double>(0.001)); CALL_SUBTEST_4(test_cuda_erf<double>(0.001));
CALL_SUBTEST_4(test_cuda_erfc<double>(1.0)); CALL_SUBTEST_4(test_cuda_erfc<double>(1.0));
// CALL_SUBTEST(test_cuda_erfc<double>(100.0)); // CALL_SUBTEST(test_cuda_erfc<double>(100.0));
CALL_SUBTEST_4(test_cuda_erfc<double>(5.0)); // CUDA erfc lacks precision for large inputs CALL_SUBTEST_4(test_cuda_erfc<double>(5.0)); // CUDA erfc lacks precision for large inputs
CALL_SUBTEST_4(test_cuda_erfc<double>(0.01)); CALL_SUBTEST_4(test_cuda_erfc<double>(0.01));
CALL_SUBTEST_4(test_cuda_erfc<double>(0.001)); CALL_SUBTEST_4(test_cuda_erfc<double>(0.001));
CALL_SUBTEST_5(test_cuda_igamma<float>());
CALL_SUBTEST_5(test_cuda_igammac<float>());
CALL_SUBTEST_5(test_cuda_igamma<double>());
CALL_SUBTEST_5(test_cuda_igammac<double>());
} }