mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
Merge branch specfun.
This commit is contained in:
commit
dd6dcad6c2
@ -78,6 +78,8 @@ struct default_packet_traits
|
||||
HasDiGamma = 0,
|
||||
HasErf = 0,
|
||||
HasErfc = 0,
|
||||
HasIGamma = 0,
|
||||
HasIGammac = 0,
|
||||
|
||||
HasRound = 0,
|
||||
HasFloor = 0,
|
||||
@ -457,6 +459,14 @@ Packet perf(const Packet& a) { using numext::erf; return erf(a); }
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet perfc(const Packet& a) { using numext::erfc; return erfc(a); }
|
||||
|
||||
/** \internal \returns the incomplete gamma function igamma(\a a, \a x) */
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Packet pigamma(const Packet& a, const Packet& x) { using numext::igamma; return igamma(a, x); }
|
||||
|
||||
/** \internal \returns the complementary incomplete gamma function igammac(\a a, \a x) */
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Packet pigammac(const Packet& a, const Packet& x) { using numext::igammac; return igammac(a, x); }
|
||||
|
||||
/***************************************************************************
|
||||
* The following functions might not have to be overwritten for vectorized types
|
||||
***************************************************************************/
|
||||
|
@ -129,6 +129,36 @@ namespace Eigen
|
||||
);
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise igamma(\a a, \a x) to the given arrays.
|
||||
*
|
||||
* This function computes the coefficient-wise incomplete gamma function.
|
||||
*
|
||||
*/
|
||||
template<typename Derived,typename ExponentDerived>
|
||||
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
|
||||
igamma(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x)
|
||||
{
|
||||
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
|
||||
a.derived(),
|
||||
x.derived()
|
||||
);
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise igammac(\a a, \a x) to the given arrays.
|
||||
*
|
||||
* This function computes the coefficient-wise complementary incomplete gamma function.
|
||||
*
|
||||
*/
|
||||
template<typename Derived,typename ExponentDerived>
|
||||
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
|
||||
igammac(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x)
|
||||
{
|
||||
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
|
||||
a.derived(),
|
||||
x.derived()
|
||||
);
|
||||
}
|
||||
|
||||
namespace internal
|
||||
{
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op)
|
||||
|
@ -95,6 +95,11 @@ template<typename T> struct GenericNumTraits
|
||||
static inline T infinity() {
|
||||
return numext::numeric_limits<T>::infinity();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline T quiet_NaN() {
|
||||
return numext::numeric_limits<T>::quiet_NaN();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T> struct NumTraits : GenericNumTraits<T>
|
||||
|
@ -283,7 +283,7 @@ struct digamma_impl {
|
||||
Scalar p, q, nz, s, w, y;
|
||||
bool negative;
|
||||
|
||||
const Scalar maxnum = numext::numeric_limits<Scalar>::infinity();
|
||||
const Scalar maxnum = NumTraits<Scalar>::infinity();
|
||||
const Scalar m_pi = 3.14159265358979323846;
|
||||
|
||||
negative = 0;
|
||||
@ -296,7 +296,8 @@ struct digamma_impl {
|
||||
if (x <= zero) {
|
||||
negative = one;
|
||||
q = x;
|
||||
p = ::floor(q);
|
||||
using std::floor;
|
||||
p = floor(q);
|
||||
if (p == q) {
|
||||
return maxnum;
|
||||
}
|
||||
@ -309,7 +310,8 @@ struct digamma_impl {
|
||||
p += one;
|
||||
nz = q - p;
|
||||
}
|
||||
nz = m_pi / ::tan(m_pi * nz);
|
||||
using std::tan;
|
||||
nz = m_pi / tan(m_pi * nz);
|
||||
}
|
||||
else {
|
||||
nz = zero;
|
||||
@ -327,7 +329,8 @@ struct digamma_impl {
|
||||
|
||||
y = digamma_impl_maybe_poly<Scalar>::run(s);
|
||||
|
||||
y = ::log(s) - (half / s) - y - w;
|
||||
using std::log;
|
||||
y = log(s) - (half / s) - y - w;
|
||||
|
||||
return (negative) ? y - nz : y;
|
||||
}
|
||||
@ -401,6 +404,332 @@ struct erfc_impl<double> {
|
||||
};
|
||||
#endif // EIGEN_HAS_C99_MATH
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of igammac (complemented incomplete gamma integral) *
|
||||
****************************************************************************/
|
||||
|
||||
template <typename Scalar>
|
||||
struct igammac_retval {
|
||||
typedef Scalar type;
|
||||
};
|
||||
|
||||
#ifndef EIGEN_HAS_C99_MATH
|
||||
|
||||
template <typename Scalar>
|
||||
struct igammac_impl {
|
||||
EIGEN_DEVICE_FUNC
|
||||
static Scalar run(Scalar a, Scalar x) {
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
||||
THIS_TYPE_IS_NOT_SUPPORTED);
|
||||
return Scalar(0);
|
||||
}
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
template <typename Scalar> struct igamma_impl; // predeclare igamma_impl
|
||||
|
||||
template <typename Scalar>
|
||||
struct igamma_helper {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
static Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; }
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
static Scalar big() { assert(false && "big not supported for this type"); return 0.0; }
|
||||
};
|
||||
|
||||
template <>
|
||||
struct igamma_helper<float> {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
static float machep() {
|
||||
return NumTraits<float>::epsilon() / 2; // 1.0 - machep == 1.0
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
static float big() {
|
||||
// use epsneg (1.0 - epsneg == 1.0)
|
||||
return 1.0 / (NumTraits<float>::epsilon() / 2);
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct igamma_helper<double> {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
static double machep() {
|
||||
return NumTraits<double>::epsilon() / 2; // 1.0 - machep == 1.0
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
static double big() {
|
||||
return 1.0 / NumTraits<double>::epsilon();
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Scalar>
|
||||
struct igammac_impl {
|
||||
EIGEN_DEVICE_FUNC
|
||||
static Scalar run(Scalar a, Scalar x) {
|
||||
/* igamc()
|
||||
*
|
||||
* Incomplete gamma integral (modified for Eigen)
|
||||
*
|
||||
*
|
||||
*
|
||||
* SYNOPSIS:
|
||||
*
|
||||
* double a, x, y, igamc();
|
||||
*
|
||||
* y = igamc( a, x );
|
||||
*
|
||||
* DESCRIPTION:
|
||||
*
|
||||
* The function is defined by
|
||||
*
|
||||
*
|
||||
* igamc(a,x) = 1 - igam(a,x)
|
||||
*
|
||||
* inf.
|
||||
* -
|
||||
* 1 | | -t a-1
|
||||
* = ----- | e t dt.
|
||||
* - | |
|
||||
* | (a) -
|
||||
* x
|
||||
*
|
||||
*
|
||||
* In this implementation both arguments must be positive.
|
||||
* The integral is evaluated by either a power series or
|
||||
* continued fraction expansion, depending on the relative
|
||||
* values of a and x.
|
||||
*
|
||||
* ACCURACY (float):
|
||||
*
|
||||
* Relative error:
|
||||
* arithmetic domain # trials peak rms
|
||||
* IEEE 0,30 30000 7.8e-6 5.9e-7
|
||||
*
|
||||
*
|
||||
* ACCURACY (double):
|
||||
*
|
||||
* Tested at random a, x.
|
||||
* a x Relative error:
|
||||
* arithmetic domain domain # trials peak rms
|
||||
* IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
|
||||
* IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
|
||||
*
|
||||
*/
|
||||
/*
|
||||
Cephes Math Library Release 2.2: June, 1992
|
||||
Copyright 1985, 1987, 1992 by Stephen L. Moshier
|
||||
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
|
||||
*/
|
||||
using std::log;
|
||||
const Scalar zero = 0;
|
||||
const Scalar one = 1;
|
||||
const Scalar two = 2;
|
||||
const Scalar machep = igamma_helper<Scalar>::machep();
|
||||
const Scalar maxlog = log(NumTraits<Scalar>::highest());
|
||||
const Scalar big = igamma_helper<Scalar>::big();
|
||||
const Scalar biginv = 1 / big;
|
||||
const Scalar nan = NumTraits<Scalar>::quiet_NaN();
|
||||
const Scalar inf = NumTraits<Scalar>::infinity();
|
||||
|
||||
Scalar ans, ax, c, yc, r, t, y, z;
|
||||
Scalar pk, pkm1, pkm2, qk, qkm1, qkm2;
|
||||
|
||||
if ((x < zero) || ( a <= zero)) {
|
||||
// domain error
|
||||
return nan;
|
||||
}
|
||||
|
||||
if ((x < one) || (x < a)) {
|
||||
return (one - igamma_impl<Scalar>::run(a, x));
|
||||
}
|
||||
|
||||
if (x == inf) return zero; // std::isinf crashes on CUDA
|
||||
|
||||
/* Compute x**a * exp(-x) / gamma(a) */
|
||||
ax = a * log(x) - x - lgamma_impl<Scalar>::run(a);
|
||||
if (ax < -maxlog) { // underflow
|
||||
return zero;
|
||||
}
|
||||
using std::exp;
|
||||
ax = exp(ax);
|
||||
|
||||
// continued fraction
|
||||
y = one - a;
|
||||
z = x + y + one;
|
||||
c = zero;
|
||||
pkm2 = one;
|
||||
qkm2 = x;
|
||||
pkm1 = x + one;
|
||||
qkm1 = z * x;
|
||||
ans = pkm1 / qkm1;
|
||||
|
||||
using std::abs;
|
||||
while (true) {
|
||||
c += one;
|
||||
y += one;
|
||||
z += two;
|
||||
yc = y * c;
|
||||
pk = pkm1 * z - pkm2 * yc;
|
||||
qk = qkm1 * z - qkm2 * yc;
|
||||
if (qk != zero) {
|
||||
r = pk / qk;
|
||||
t = abs((ans - r) / r);
|
||||
ans = r;
|
||||
} else {
|
||||
t = one;
|
||||
}
|
||||
pkm2 = pkm1;
|
||||
pkm1 = pk;
|
||||
qkm2 = qkm1;
|
||||
qkm1 = qk;
|
||||
if (abs(pk) > big) {
|
||||
pkm2 *= biginv;
|
||||
pkm1 *= biginv;
|
||||
qkm2 *= biginv;
|
||||
qkm1 *= biginv;
|
||||
}
|
||||
if (t <= machep) break;
|
||||
}
|
||||
|
||||
return (ans * ax);
|
||||
}
|
||||
};
|
||||
|
||||
#endif // EIGEN_HAS_C99_MATH
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of igamma (incomplete gamma integral) *
|
||||
****************************************************************************/
|
||||
|
||||
template <typename Scalar>
|
||||
struct igamma_retval {
|
||||
typedef Scalar type;
|
||||
};
|
||||
|
||||
#ifndef EIGEN_HAS_C99_MATH
|
||||
|
||||
template <typename Scalar>
|
||||
struct igamma_impl {
|
||||
EIGEN_DEVICE_FUNC
|
||||
static Scalar run(Scalar a, Scalar x) {
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
||||
THIS_TYPE_IS_NOT_SUPPORTED);
|
||||
return Scalar(0);
|
||||
}
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
template <typename Scalar>
|
||||
struct igamma_impl {
|
||||
EIGEN_DEVICE_FUNC
|
||||
static Scalar run(Scalar a, Scalar x) {
|
||||
/* igam()
|
||||
* Incomplete gamma integral
|
||||
*
|
||||
*
|
||||
*
|
||||
* SYNOPSIS:
|
||||
*
|
||||
* double a, x, y, igam();
|
||||
*
|
||||
* y = igam( a, x );
|
||||
*
|
||||
* DESCRIPTION:
|
||||
*
|
||||
* The function is defined by
|
||||
*
|
||||
* x
|
||||
* -
|
||||
* 1 | | -t a-1
|
||||
* igam(a,x) = ----- | e t dt.
|
||||
* - | |
|
||||
* | (a) -
|
||||
* 0
|
||||
*
|
||||
*
|
||||
* In this implementation both arguments must be positive.
|
||||
* The integral is evaluated by either a power series or
|
||||
* continued fraction expansion, depending on the relative
|
||||
* values of a and x.
|
||||
*
|
||||
* ACCURACY (double):
|
||||
*
|
||||
* Relative error:
|
||||
* arithmetic domain # trials peak rms
|
||||
* IEEE 0,30 200000 3.6e-14 2.9e-15
|
||||
* IEEE 0,100 300000 9.9e-14 1.5e-14
|
||||
*
|
||||
*
|
||||
* ACCURACY (float):
|
||||
*
|
||||
* Relative error:
|
||||
* arithmetic domain # trials peak rms
|
||||
* IEEE 0,30 20000 7.8e-6 5.9e-7
|
||||
*
|
||||
*/
|
||||
/*
|
||||
Cephes Math Library Release 2.2: June, 1992
|
||||
Copyright 1985, 1987, 1992 by Stephen L. Moshier
|
||||
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
|
||||
*/
|
||||
|
||||
|
||||
/* left tail of incomplete gamma function:
|
||||
*
|
||||
* inf. k
|
||||
* a -x - x
|
||||
* x e > ----------
|
||||
* - -
|
||||
* k=0 | (a+k+1)
|
||||
*
|
||||
*/
|
||||
using std::log;
|
||||
const Scalar zero = 0;
|
||||
const Scalar one = 1;
|
||||
const Scalar machep = igamma_helper<Scalar>::machep();
|
||||
const Scalar maxlog = log(NumTraits<Scalar>::highest());
|
||||
const Scalar nan = NumTraits<Scalar>::quiet_NaN();
|
||||
|
||||
double ans, ax, c, r;
|
||||
|
||||
if (x == zero) return zero;
|
||||
|
||||
if ((x < zero) || ( a <= zero)) { // domain error
|
||||
return nan;
|
||||
}
|
||||
|
||||
if ((x > one) && (x > a)) {
|
||||
return (one - igammac_impl<Scalar>::run(a, x));
|
||||
}
|
||||
|
||||
/* Compute x**a * exp(-x) / gamma(a) */
|
||||
ax = a * log(x) - x - lgamma_impl<Scalar>::run(a);
|
||||
if (ax < -maxlog) {
|
||||
// underflow
|
||||
return zero;
|
||||
}
|
||||
using std::exp;
|
||||
ax = exp(ax);
|
||||
|
||||
/* power series */
|
||||
r = a;
|
||||
c = one;
|
||||
ans = one;
|
||||
|
||||
while (true) {
|
||||
r += one;
|
||||
c *= x/r;
|
||||
ans += c;
|
||||
if (c/ans <= machep) break;
|
||||
}
|
||||
|
||||
return (ans * ax / a);
|
||||
}
|
||||
};
|
||||
|
||||
#endif // EIGEN_HAS_C99_MATH
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
namespace numext {
|
||||
@ -429,8 +758,21 @@ EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar)
|
||||
return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x);
|
||||
}
|
||||
|
||||
template <typename Scalar>
|
||||
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar)
|
||||
igamma(const Scalar& a, const Scalar& x) {
|
||||
return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x);
|
||||
}
|
||||
|
||||
template <typename Scalar>
|
||||
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar)
|
||||
igammac(const Scalar& a, const Scalar& x) {
|
||||
return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x);
|
||||
}
|
||||
|
||||
} // end namespace numext
|
||||
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPECIAL_FUNCTIONS_H
|
||||
|
@ -117,6 +117,42 @@ double2 perfc<double2>(const double2& a)
|
||||
}
|
||||
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
float4 pigamma<float4>(const float4& a, const float4& x)
|
||||
{
|
||||
using numext::igamma;
|
||||
return make_float4(
|
||||
igamma(a.x, x.x),
|
||||
igamma(a.y, x.y),
|
||||
igamma(a.z, x.z),
|
||||
igamma(a.w, x.w));
|
||||
}
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
double2 pigamma<double2>(const double2& a, const double2& x)
|
||||
{
|
||||
using numext::igamma;
|
||||
return make_double2(igamma(a.x, x.x), igamma(a.y, x.y));
|
||||
}
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
float4 pigammac<float4>(const float4& a, const float4& x)
|
||||
{
|
||||
using numext::igammac;
|
||||
return make_float4(
|
||||
igammac(a.x, x.x),
|
||||
igammac(a.y, x.y),
|
||||
igammac(a.z, x.z),
|
||||
igammac(a.w, x.w));
|
||||
}
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
double2 pigammac<double2>(const double2& a, const double2& x)
|
||||
{
|
||||
using numext::igammac;
|
||||
return make_double2(igammac(a.x, x.x), igammac(a.y, x.y));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
} // end namespace internal
|
||||
|
@ -43,6 +43,8 @@ template<> struct packet_traits<float> : default_packet_traits
|
||||
HasDiGamma = 1,
|
||||
HasErf = 1,
|
||||
HasErfc = 1,
|
||||
HasIgamma = 1,
|
||||
HasIGammac = 1,
|
||||
|
||||
HasBlend = 0,
|
||||
};
|
||||
@ -67,6 +69,8 @@ template<> struct packet_traits<double> : default_packet_traits
|
||||
HasDiGamma = 1,
|
||||
HasErf = 1,
|
||||
HasErfc = 1,
|
||||
HasIGamma = 1,
|
||||
HasIGammac = 1,
|
||||
|
||||
HasBlend = 0,
|
||||
};
|
||||
@ -280,7 +284,6 @@ template<> EIGEN_DEVICE_FUNC inline double2 pabs<double2>(const double2& a) {
|
||||
return make_double2(fabs(a.x), fabs(a.y));
|
||||
}
|
||||
|
||||
|
||||
EIGEN_DEVICE_FUNC inline void
|
||||
ptranspose(PacketBlock<float4,4>& kernel) {
|
||||
double tmp = kernel.packet[0].y;
|
||||
|
@ -337,6 +337,55 @@ template<> struct functor_traits<scalar_boolean_or_op> {
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the incomplete gamma function igamma(a, x)
|
||||
*
|
||||
* \sa class CwiseBinaryOp, Cwise::igamma
|
||||
*/
|
||||
template<typename Scalar> struct scalar_igamma_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_igamma_op)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& x) const {
|
||||
using numext::igamma; return igamma(a, x);
|
||||
}
|
||||
template<typename Packet>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const {
|
||||
return internal::pigammac(a, x);
|
||||
}
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_igamma_op<Scalar> > {
|
||||
enum {
|
||||
// Guesstimate
|
||||
Cost = 20 * NumTraits<Scalar>::MulCost + 10 * NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasIGamma
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the complementary incomplete gamma function igammac(a, x)
|
||||
*
|
||||
* \sa class CwiseBinaryOp, Cwise::igammac
|
||||
*/
|
||||
template<typename Scalar> struct scalar_igammac_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_igammac_op)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& x) const {
|
||||
using numext::igammac; return igammac(a, x);
|
||||
}
|
||||
template<typename Packet>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const
|
||||
{
|
||||
return internal::pigammac(a, x);
|
||||
}
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_igammac_op<Scalar> > {
|
||||
enum {
|
||||
// Guesstimate
|
||||
Cost = 20 * NumTraits<Scalar>::MulCost + 10 * NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = packet_traits<Scalar>::HasIGammac
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
//---------- binary functors bound to a constant, thus appearing as a unary functor ----------
|
||||
|
@ -206,6 +206,8 @@ template<typename Scalar> struct scalar_add_op;
|
||||
template<typename Scalar> struct scalar_constant_op;
|
||||
template<typename Scalar> struct scalar_identity_op;
|
||||
template<typename Scalar,bool iscpx> struct scalar_sign_op;
|
||||
template<typename Scalar> struct scalar_igamma_op;
|
||||
template<typename Scalar> struct scalar_igammac_op;
|
||||
|
||||
template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_product_op;
|
||||
template<typename LhsScalar,typename RhsScalar> struct scalar_multiple2_op;
|
||||
|
@ -148,6 +148,7 @@ template<typename T> struct numeric_limits
|
||||
static T (max)() { assert(false && "Highest not supported for this type"); }
|
||||
static T (min)() { assert(false && "Lowest not supported for this type"); }
|
||||
static T infinity() { assert(false && "Infinity not supported for this type"); }
|
||||
static T quiet_NaN() { assert(false && "quiet_NaN not supported for this type"); }
|
||||
};
|
||||
template<> struct numeric_limits<float>
|
||||
{
|
||||
@ -159,6 +160,8 @@ template<> struct numeric_limits<float>
|
||||
static float (min)() { return FLT_MIN; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
static float infinity() { return CUDART_INF_F; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
static float quiet_NaN() { return CUDART_NAN_F; }
|
||||
};
|
||||
template<> struct numeric_limits<double>
|
||||
{
|
||||
@ -170,6 +173,8 @@ template<> struct numeric_limits<double>
|
||||
static double (min)() { return DBL_MIN; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
static double infinity() { return CUDART_INF; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
static double quiet_NaN() { return CUDART_NAN; }
|
||||
};
|
||||
template<> struct numeric_limits<int>
|
||||
{
|
||||
|
@ -19,12 +19,15 @@ macro(ei_add_test_internal testname testname_with_suffix)
|
||||
endif()
|
||||
|
||||
if(EIGEN_ADD_TEST_FILENAME_EXTENSION STREQUAL cu)
|
||||
cuda_add_executable(${targetname} ${filename})
|
||||
if (${ARGC} GREATER 2)
|
||||
cuda_add_executable(${targetname} ${filename} OPTIONS ${ARGV2})
|
||||
else()
|
||||
cuda_add_executable(${targetname} ${filename})
|
||||
endif()
|
||||
else()
|
||||
add_executable(${targetname} ${filename})
|
||||
endif()
|
||||
|
||||
|
||||
if (targetname MATCHES "^eigen2_")
|
||||
add_dependencies(eigen2_buildtests ${targetname})
|
||||
else()
|
||||
|
@ -295,7 +295,6 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
||||
VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square());
|
||||
VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square());
|
||||
VERIFY_IS_APPROX(pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0)));
|
||||
|
||||
|
||||
VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
|
||||
VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
|
||||
@ -305,6 +304,14 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
||||
|
||||
VERIFY_IS_APPROX(log10(m3), log(m3)/log(10));
|
||||
|
||||
// Smoke test to check any compilation issues
|
||||
ArrayType m1_abs_p1 = m1.abs() + 1;
|
||||
ArrayType m2_abs_p1 = m2.abs() + 1;
|
||||
VERIFY_IS_APPROX(Eigen::igamma(m1_abs_p1, m2_abs_p1), Eigen::igamma(m1_abs_p1, m2_abs_p1));
|
||||
VERIFY_IS_APPROX(Eigen::igammac(m1_abs_p1, m2_abs_p1), Eigen::igammac(m1_abs_p1, m2_abs_p1));
|
||||
VERIFY_IS_APPROX(Eigen::igamma(m2_abs_p1, m1_abs_p1), Eigen::igamma(m2_abs_p1, m1_abs_p1));
|
||||
VERIFY_IS_APPROX(Eigen::igammac(m2_abs_p1, m1_abs_p1), Eigen::igammac(m2_abs_p1, m1_abs_p1));
|
||||
|
||||
// scalar by array division
|
||||
const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
|
||||
s1 += Scalar(tiny);
|
||||
@ -323,6 +330,48 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
||||
std::numeric_limits<RealScalar>::infinity());
|
||||
VERIFY_IS_EQUAL(numext::digamma(Scalar(-1)),
|
||||
std::numeric_limits<RealScalar>::infinity());
|
||||
|
||||
Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
|
||||
Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
|
||||
|
||||
// location i*6+j corresponds to a_s[i], x_s[j].
|
||||
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
|
||||
Scalar igamma_s[][6] = {{0.0, nan, nan, nan, nan, nan},
|
||||
{0.0, 0.6321205588285578, 0.7768698398515702,
|
||||
0.9816843611112658, 9.999500016666262e-05, 1.0},
|
||||
{0.0, 0.4275932955291202, 0.608374823728911,
|
||||
0.9539882943107686, 7.522076445089201e-07, 1.0},
|
||||
{0.0, 0.01898815687615381, 0.06564245437845008,
|
||||
0.5665298796332909, 4.166333347221828e-18, 1.0},
|
||||
{0.0, 0.9999780593618628, 0.9999899967080838,
|
||||
0.9999996219837988, 0.9991370418689945, 1.0},
|
||||
{0.0, 0.0, 0.0, 0.0, 0.0, 0.5042041932513908}};
|
||||
Scalar igammac_s[][6] = {{nan, nan, nan, nan, nan, nan},
|
||||
{1.0, 0.36787944117144233, 0.22313016014842982,
|
||||
0.018315638888734182, 0.9999000049998333, 0.0},
|
||||
{1.0, 0.5724067044708798, 0.3916251762710878,
|
||||
0.04601170568923136, 0.9999992477923555, 0.0},
|
||||
{1.0, 0.9810118431238462, 0.9343575456215499,
|
||||
0.4334701203667089, 1.0, 0.0},
|
||||
{1.0, 2.1940638138146658e-05, 1.0003291916285e-05,
|
||||
3.7801620118431334e-07, 0.0008629581310054535,
|
||||
0.0},
|
||||
{1.0, 1.0, 1.0, 1.0, 1.0, 0.49579580674813944}};
|
||||
for (int i = 0; i < 6; ++i) {
|
||||
for (int j = 0; j < 6; ++j) {
|
||||
if ((std::isnan)(igamma_s[i][j])) {
|
||||
VERIFY((std::isnan)(numext::igamma(a_s[i], x_s[j])));
|
||||
} else {
|
||||
VERIFY_IS_APPROX(numext::igamma(a_s[i], x_s[j]), igamma_s[i][j]);
|
||||
}
|
||||
|
||||
if ((std::isnan)(igammac_s[i][j])) {
|
||||
VERIFY((std::isnan)(numext::igammac(a_s[i], x_s[j])));
|
||||
} else {
|
||||
VERIFY_IS_APPROX(numext::igammac(a_s[i], x_s[j]), igammac_s[i][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // EIGEN_HAS_C99_MATH
|
||||
|
||||
|
@ -315,12 +315,27 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
||||
operator==(const OtherDerived& other) const {
|
||||
return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, internal::cmp_EQ>());
|
||||
}
|
||||
|
||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_NEQ>, const Derived, const OtherDerived>
|
||||
operator!=(const OtherDerived& other) const {
|
||||
return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, internal::cmp_NEQ>());
|
||||
}
|
||||
|
||||
// igamma(a = this, x = other)
|
||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorCwiseBinaryOp<internal::scalar_igamma_op<Scalar>, const Derived, const OtherDerived>
|
||||
igamma(const OtherDerived& other) const {
|
||||
return binaryExpr(other.derived(), internal::scalar_igamma_op<Scalar>());
|
||||
}
|
||||
|
||||
// igammac(a = this, x = other)
|
||||
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorCwiseBinaryOp<internal::scalar_igammac_op<Scalar>, const Derived, const OtherDerived>
|
||||
igammac(const OtherDerived& other) const {
|
||||
return binaryExpr(other.derived(), internal::scalar_igammac_op<Scalar>());
|
||||
}
|
||||
|
||||
// comparisons and tests for Scalars
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_LT>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
|
||||
|
@ -1,3 +1,17 @@
|
||||
# generate split test header file only if it does not yet exist
|
||||
# in order to prevent a rebuild everytime cmake is configured
|
||||
if(NOT EXISTS ${CMAKE_CURRENT_BINARY_DIR}/split_test_helper.h)
|
||||
file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/split_test_helper.h "")
|
||||
foreach(i RANGE 1 999)
|
||||
file(APPEND ${CMAKE_CURRENT_BINARY_DIR}/split_test_helper.h
|
||||
"#ifdef EIGEN_TEST_PART_${i}\n"
|
||||
"#define CALL_SUBTEST_${i}(FUNC) CALL_SUBTEST(FUNC)\n"
|
||||
"#else\n"
|
||||
"#define CALL_SUBTEST_${i}(FUNC)\n"
|
||||
"#endif\n\n"
|
||||
)
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
set_property(GLOBAL PROPERTY EIGEN_CURRENT_SUBPROJECT "Unsupported")
|
||||
add_custom_target(BuildUnsupported)
|
||||
@ -158,7 +172,7 @@ endif()
|
||||
# These tests needs nvcc
|
||||
find_package(CUDA 7.0)
|
||||
if(CUDA_FOUND)
|
||||
set(CUDA_PROPAGATE_HOST_FLAGS OFF)
|
||||
# set(CUDA_PROPAGATE_HOST_FLAGS OFF)
|
||||
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")
|
||||
set(CUDA_NVCC_FLAGS "-ccbin /usr/bin/clang" CACHE STRING "nvcc flags" FORCE)
|
||||
endif()
|
||||
|
@ -574,6 +574,191 @@ void test_cuda_lgamma(const Scalar stddev)
|
||||
cudaFree(d_out);
|
||||
}
|
||||
|
||||
template <typename Scalar>
|
||||
void test_cuda_digamma()
|
||||
{
|
||||
Tensor<Scalar, 1> in(7);
|
||||
Tensor<Scalar, 1> out(7);
|
||||
Tensor<Scalar, 1> expected_out(7);
|
||||
out.setZero();
|
||||
|
||||
in(0) = Scalar(1);
|
||||
in(1) = Scalar(1.5);
|
||||
in(2) = Scalar(4);
|
||||
in(3) = Scalar(-10.5);
|
||||
in(4) = Scalar(10000.5);
|
||||
in(5) = Scalar(0);
|
||||
in(6) = Scalar(-1);
|
||||
|
||||
expected_out(0) = Scalar(-0.5772156649015329);
|
||||
expected_out(1) = Scalar(0.03648997397857645);
|
||||
expected_out(2) = Scalar(1.2561176684318);
|
||||
expected_out(3) = Scalar(2.398239129535781);
|
||||
expected_out(4) = Scalar(9.210340372392849);
|
||||
expected_out(5) = std::numeric_limits<Scalar>::infinity();
|
||||
expected_out(6) = std::numeric_limits<Scalar>::infinity();
|
||||
|
||||
std::size_t bytes = in.size() * sizeof(Scalar);
|
||||
|
||||
Scalar* d_in;
|
||||
Scalar* d_out;
|
||||
cudaMalloc((void**)(&d_in), bytes);
|
||||
cudaMalloc((void**)(&d_out), bytes);
|
||||
|
||||
cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice);
|
||||
|
||||
Eigen::CudaStreamDevice stream;
|
||||
Eigen::GpuDevice gpu_device(&stream);
|
||||
|
||||
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in(d_in, 7);
|
||||
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 7);
|
||||
|
||||
gpu_out.device(gpu_device) = gpu_in.digamma();
|
||||
|
||||
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
||||
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
||||
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
VERIFY_IS_APPROX(out(i), expected_out(i));
|
||||
}
|
||||
for (int i = 5; i < 7; ++i) {
|
||||
VERIFY_IS_EQUAL(out(i), expected_out(i));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Scalar>
|
||||
void test_cuda_igamma()
|
||||
{
|
||||
Tensor<Scalar, 2> a(6, 6);
|
||||
Tensor<Scalar, 2> x(6, 6);
|
||||
Tensor<Scalar, 2> out(6, 6);
|
||||
out.setZero();
|
||||
|
||||
Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
|
||||
Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
|
||||
|
||||
for (int i = 0; i < 6; ++i) {
|
||||
for (int j = 0; j < 6; ++j) {
|
||||
a(i, j) = a_s[i];
|
||||
x(i, j) = x_s[j];
|
||||
}
|
||||
}
|
||||
|
||||
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
|
||||
Scalar igamma_s[][6] = {{0.0, nan, nan, nan, nan, nan},
|
||||
{0.0, 0.6321205588285578, 0.7768698398515702,
|
||||
0.9816843611112658, 9.999500016666262e-05, 1.0},
|
||||
{0.0, 0.4275932955291202, 0.608374823728911,
|
||||
0.9539882943107686, 7.522076445089201e-07, 1.0},
|
||||
{0.0, 0.01898815687615381, 0.06564245437845008,
|
||||
0.5665298796332909, 4.166333347221828e-18, 1.0},
|
||||
{0.0, 0.9999780593618628, 0.9999899967080838,
|
||||
0.9999996219837988, 0.9991370418689945, 1.0},
|
||||
{0.0, 0.0, 0.0, 0.0, 0.0, 0.5042041932513908}};
|
||||
|
||||
|
||||
|
||||
std::size_t bytes = a.size() * sizeof(Scalar);
|
||||
|
||||
Scalar* d_a;
|
||||
Scalar* d_x;
|
||||
Scalar* d_out;
|
||||
cudaMalloc((void**)(&d_a), bytes);
|
||||
cudaMalloc((void**)(&d_x), bytes);
|
||||
cudaMalloc((void**)(&d_out), bytes);
|
||||
|
||||
cudaMemcpy(d_a, a.data(), bytes, cudaMemcpyHostToDevice);
|
||||
cudaMemcpy(d_x, x.data(), bytes, cudaMemcpyHostToDevice);
|
||||
|
||||
Eigen::CudaStreamDevice stream;
|
||||
Eigen::GpuDevice gpu_device(&stream);
|
||||
|
||||
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_a(d_a, 6, 6);
|
||||
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_x(d_x, 6, 6);
|
||||
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 6, 6);
|
||||
|
||||
gpu_out.device(gpu_device) = gpu_a.igamma(gpu_x);
|
||||
|
||||
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
||||
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
||||
|
||||
for (int i = 0; i < 6; ++i) {
|
||||
for (int j = 0; j < 6; ++j) {
|
||||
if ((std::isnan)(igamma_s[i][j])) {
|
||||
VERIFY((std::isnan)(out(i, j)));
|
||||
} else {
|
||||
VERIFY_IS_APPROX(out(i, j), igamma_s[i][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Scalar>
|
||||
void test_cuda_igammac()
|
||||
{
|
||||
Tensor<Scalar, 2> a(6, 6);
|
||||
Tensor<Scalar, 2> x(6, 6);
|
||||
Tensor<Scalar, 2> out(6, 6);
|
||||
out.setZero();
|
||||
|
||||
Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
|
||||
Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
|
||||
|
||||
for (int i = 0; i < 6; ++i) {
|
||||
for (int j = 0; j < 6; ++j) {
|
||||
a(i, j) = a_s[i];
|
||||
x(i, j) = x_s[j];
|
||||
}
|
||||
}
|
||||
|
||||
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
|
||||
Scalar igammac_s[][6] = {{nan, nan, nan, nan, nan, nan},
|
||||
{1.0, 0.36787944117144233, 0.22313016014842982,
|
||||
0.018315638888734182, 0.9999000049998333, 0.0},
|
||||
{1.0, 0.5724067044708798, 0.3916251762710878,
|
||||
0.04601170568923136, 0.9999992477923555, 0.0},
|
||||
{1.0, 0.9810118431238462, 0.9343575456215499,
|
||||
0.4334701203667089, 1.0, 0.0},
|
||||
{1.0, 2.1940638138146658e-05, 1.0003291916285e-05,
|
||||
3.7801620118431334e-07, 0.0008629581310054535,
|
||||
0.0},
|
||||
{1.0, 1.0, 1.0, 1.0, 1.0, 0.49579580674813944}};
|
||||
|
||||
std::size_t bytes = a.size() * sizeof(Scalar);
|
||||
|
||||
Scalar* d_a;
|
||||
Scalar* d_x;
|
||||
Scalar* d_out;
|
||||
cudaMalloc((void**)(&d_a), bytes);
|
||||
cudaMalloc((void**)(&d_x), bytes);
|
||||
cudaMalloc((void**)(&d_out), bytes);
|
||||
|
||||
cudaMemcpy(d_a, a.data(), bytes, cudaMemcpyHostToDevice);
|
||||
cudaMemcpy(d_x, x.data(), bytes, cudaMemcpyHostToDevice);
|
||||
|
||||
Eigen::CudaStreamDevice stream;
|
||||
Eigen::GpuDevice gpu_device(&stream);
|
||||
|
||||
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_a(d_a, 6, 6);
|
||||
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_x(d_x, 6, 6);
|
||||
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 6, 6);
|
||||
|
||||
gpu_out.device(gpu_device) = gpu_a.igammac(gpu_x);
|
||||
|
||||
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
||||
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
||||
|
||||
for (int i = 0; i < 6; ++i) {
|
||||
for (int j = 0; j < 6; ++j) {
|
||||
if ((std::isnan)(igammac_s[i][j])) {
|
||||
VERIFY((std::isnan)(out(i, j)));
|
||||
} else {
|
||||
VERIFY_IS_APPROX(out(i, j), igammac_s[i][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Scalar>
|
||||
void test_cuda_erf(const Scalar stddev)
|
||||
{
|
||||
@ -667,30 +852,46 @@ void test_cxx11_tensor_cuda()
|
||||
CALL_SUBTEST_3(test_cuda_convolution_2d<RowMajor>());
|
||||
CALL_SUBTEST_3(test_cuda_convolution_3d<ColMajor>());
|
||||
CALL_SUBTEST_3(test_cuda_convolution_3d<RowMajor>());
|
||||
|
||||
CALL_SUBTEST_4(test_cuda_lgamma<float>(1.0f));
|
||||
CALL_SUBTEST_4(test_cuda_lgamma<float>(100.0f));
|
||||
CALL_SUBTEST_4(test_cuda_lgamma<float>(0.01f));
|
||||
CALL_SUBTEST_4(test_cuda_lgamma<float>(0.001f));
|
||||
|
||||
CALL_SUBTEST_4(test_cuda_digamma<float>());
|
||||
|
||||
CALL_SUBTEST_4(test_cuda_erf<float>(1.0f));
|
||||
CALL_SUBTEST_4(test_cuda_erf<float>(100.0f));
|
||||
CALL_SUBTEST_4(test_cuda_erf<float>(0.01f));
|
||||
CALL_SUBTEST_4(test_cuda_erf<float>(0.001f));
|
||||
|
||||
CALL_SUBTEST_4(test_cuda_erfc<float>(1.0f));
|
||||
// CALL_SUBTEST(test_cuda_erfc<float>(100.0f));
|
||||
CALL_SUBTEST_4(test_cuda_erfc<float>(5.0f)); // CUDA erfc lacks precision for large inputs
|
||||
CALL_SUBTEST_4(test_cuda_erfc<float>(0.01f));
|
||||
CALL_SUBTEST_4(test_cuda_erfc<float>(0.001f));
|
||||
|
||||
CALL_SUBTEST_4(test_cuda_lgamma<double>(1.0));
|
||||
CALL_SUBTEST_4(test_cuda_lgamma<double>(100.0));
|
||||
CALL_SUBTEST_4(test_cuda_lgamma<double>(0.01));
|
||||
CALL_SUBTEST_4(test_cuda_lgamma<double>(0.001));
|
||||
|
||||
CALL_SUBTEST_4(test_cuda_digamma<double>());
|
||||
|
||||
CALL_SUBTEST_4(test_cuda_erf<double>(1.0));
|
||||
CALL_SUBTEST_4(test_cuda_erf<double>(100.0));
|
||||
CALL_SUBTEST_4(test_cuda_erf<double>(0.01));
|
||||
CALL_SUBTEST_4(test_cuda_erf<double>(0.001));
|
||||
|
||||
CALL_SUBTEST_4(test_cuda_erfc<double>(1.0));
|
||||
// CALL_SUBTEST(test_cuda_erfc<double>(100.0));
|
||||
CALL_SUBTEST_4(test_cuda_erfc<double>(5.0)); // CUDA erfc lacks precision for large inputs
|
||||
CALL_SUBTEST_4(test_cuda_erfc<double>(0.01));
|
||||
CALL_SUBTEST_4(test_cuda_erfc<double>(0.001));
|
||||
|
||||
CALL_SUBTEST_5(test_cuda_igamma<float>());
|
||||
CALL_SUBTEST_5(test_cuda_igammac<float>());
|
||||
|
||||
CALL_SUBTEST_5(test_cuda_igamma<double>());
|
||||
CALL_SUBTEST_5(test_cuda_igammac<double>());
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user