mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-07 18:27:40 +08:00
Added support for 3D patch extraction
This commit is contained in:
parent
f587075987
commit
dc31fcb9ba
@ -82,6 +82,7 @@
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h"
|
||||
|
@ -414,6 +414,26 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
||||
padding_type);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>
|
||||
extract_volume_patches(const Index patch_planes, const Index patch_rows, const Index patch_cols,
|
||||
const Index plane_stride = 1, const Index row_stride = 1, const Index col_stride = 1,
|
||||
const PaddingType padding_type = PADDING_SAME, const Scalar padding_value = 0) const {
|
||||
return TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>(derived(), patch_planes, patch_rows, patch_cols, plane_stride, row_stride, col_stride, 1, 1, 1, 1, 1, 1, padding_type, padding_value);
|
||||
}
|
||||
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>
|
||||
extract_volume_patches(const Index patch_planes, const Index patch_rows, const Index patch_cols,
|
||||
const Index plane_stride, const Index row_stride, const Index col_stride,
|
||||
const Index plane_inflate_stride, const Index row_inflate_stride, const Index col_inflate_stride,
|
||||
const Index padding_top_z, const Index padding_bottom_z,
|
||||
const Index padding_top, const Index padding_bottom,
|
||||
const Index padding_left, const Index padding_right, const Scalar padding_value = 0) const {
|
||||
return TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Derived>(derived(), patch_planes, patch_rows, patch_cols, plane_stride, row_stride, col_stride, 1, 1, 1, plane_inflate_stride, row_inflate_stride, col_inflate_stride, padding_top_z, padding_bottom_z, padding_top, padding_bottom, padding_left, padding_right, padding_value);
|
||||
}
|
||||
|
||||
// Morphing operators.
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorLayoutSwapOp<const Derived>
|
||||
|
@ -29,6 +29,7 @@ template<typename TargetType, typename XprType> class TensorConversionOp;
|
||||
template<typename Dimensions, typename InputXprType, typename KernelXprType> class TensorConvolutionOp;
|
||||
template<typename PatchDim, typename XprType> class TensorPatchOp;
|
||||
template<DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorImagePatchOp;
|
||||
template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorVolumePatchOp;
|
||||
template<typename Broadcast, typename XprType> class TensorBroadcastingOp;
|
||||
template<DenseIndex DimId, typename XprType> class TensorChippingOp;
|
||||
template<typename NewDimensions, typename XprType> class TensorReshapingOp;
|
||||
|
677
unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h
Normal file
677
unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h
Normal file
@ -0,0 +1,677 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
|
||||
#ifndef EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
|
||||
#define EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorVolumePatch
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Patch extraction specialized for processing of volumetric data.
|
||||
* This assumes that the input has a least 4 dimensions ordered as follows:
|
||||
* - channels
|
||||
* - planes
|
||||
* - rows
|
||||
* - columns
|
||||
* - (optional) additional dimensions such as time or batch size.
|
||||
* Calling the volume patch code with patch_planes, patch_rows, and patch_cols
|
||||
* is equivalent to calling the regular patch extraction code with parameters
|
||||
* d, patch_planes, patch_rows, patch_cols, and 1 for all the additional
|
||||
* dimensions.
|
||||
*/
|
||||
namespace internal {
|
||||
template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
|
||||
struct traits<TensorVolumePatchOp<Planes, Rows, Cols, XprType> > : public traits<XprType>
|
||||
{
|
||||
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
|
||||
typedef traits<XprType> XprTraits;
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
typedef typename XprTraits::StorageKind StorageKind;
|
||||
typedef typename XprTraits::Index Index;
|
||||
typedef typename XprType::Nested Nested;
|
||||
typedef typename remove_reference<Nested>::type _Nested;
|
||||
static const int NumDimensions = XprTraits::NumDimensions + 1;
|
||||
static const int Layout = XprTraits::Layout;
|
||||
};
|
||||
|
||||
template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
|
||||
struct eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, Eigen::Dense>
|
||||
{
|
||||
typedef const TensorVolumePatchOp<Planes, Rows, Cols, XprType>& type;
|
||||
};
|
||||
|
||||
template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
|
||||
struct nested<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, 1, typename eval<TensorVolumePatchOp<Planes, Rows, Cols, XprType> >::type>
|
||||
{
|
||||
typedef TensorVolumePatchOp<Planes, Rows, Cols, XprType> type;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType>
|
||||
class TensorVolumePatchOp : public TensorBase<TensorVolumePatchOp<Planes, Rows, Cols, XprType>, ReadOnlyAccessors>
|
||||
{
|
||||
public:
|
||||
typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Scalar Scalar;
|
||||
typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Packet Packet;
|
||||
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||
typedef typename Eigen::internal::nested<TensorVolumePatchOp>::type Nested;
|
||||
typedef typename Eigen::internal::traits<TensorVolumePatchOp>::StorageKind StorageKind;
|
||||
typedef typename Eigen::internal::traits<TensorVolumePatchOp>::Index Index;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols,
|
||||
DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides,
|
||||
DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides,
|
||||
DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
|
||||
PaddingType padding_type, Scalar padding_value)
|
||||
: m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
|
||||
m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides),
|
||||
m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
|
||||
m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
|
||||
m_padding_explicit(false), m_padding_top_z(0), m_padding_bottom_z(0), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0),
|
||||
m_padding_type(padding_type), m_padding_value(padding_value) {}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorVolumePatchOp(const XprType& expr, DenseIndex patch_planes, DenseIndex patch_rows, DenseIndex patch_cols,
|
||||
DenseIndex plane_strides, DenseIndex row_strides, DenseIndex col_strides,
|
||||
DenseIndex in_plane_strides, DenseIndex in_row_strides, DenseIndex in_col_strides,
|
||||
DenseIndex plane_inflate_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides,
|
||||
DenseIndex padding_top_z, DenseIndex padding_bottom_z,
|
||||
DenseIndex padding_top, DenseIndex padding_bottom,
|
||||
DenseIndex padding_left, DenseIndex padding_right,
|
||||
Scalar padding_value)
|
||||
: m_xpr(expr), m_patch_planes(patch_planes), m_patch_rows(patch_rows), m_patch_cols(patch_cols),
|
||||
m_plane_strides(plane_strides), m_row_strides(row_strides), m_col_strides(col_strides),
|
||||
m_in_plane_strides(in_plane_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides),
|
||||
m_plane_inflate_strides(plane_inflate_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides),
|
||||
m_padding_explicit(true), m_padding_top_z(padding_top_z), m_padding_bottom_z(padding_bottom_z), m_padding_top(padding_top), m_padding_bottom(padding_bottom),
|
||||
m_padding_left(padding_left), m_padding_right(padding_right),
|
||||
m_padding_type(PADDING_VALID), m_padding_value(padding_value) {}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex patch_planes() const { return m_patch_planes; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex patch_rows() const { return m_patch_rows; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex patch_cols() const { return m_patch_cols; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex plane_strides() const { return m_plane_strides; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex row_strides() const { return m_row_strides; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex col_strides() const { return m_col_strides; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex in_plane_strides() const { return m_in_plane_strides; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex in_row_strides() const { return m_in_row_strides; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex in_col_strides() const { return m_in_col_strides; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex plane_inflate_strides() const { return m_plane_inflate_strides; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex row_inflate_strides() const { return m_row_inflate_strides; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex col_inflate_strides() const { return m_col_inflate_strides; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
bool padding_explicit() const { return m_padding_explicit; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex padding_top_z() const { return m_padding_top_z; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex padding_bottom_z() const { return m_padding_bottom_z; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex padding_top() const { return m_padding_top; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex padding_bottom() const { return m_padding_bottom; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex padding_left() const { return m_padding_left; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseIndex padding_right() const { return m_padding_right; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
PaddingType padding_type() const { return m_padding_type; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
Scalar padding_value() const { return m_padding_value; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const typename internal::remove_all<typename XprType::Nested>::type&
|
||||
expression() const { return m_xpr; }
|
||||
|
||||
protected:
|
||||
typename XprType::Nested m_xpr;
|
||||
const DenseIndex m_patch_planes;
|
||||
const DenseIndex m_patch_rows;
|
||||
const DenseIndex m_patch_cols;
|
||||
const DenseIndex m_plane_strides;
|
||||
const DenseIndex m_row_strides;
|
||||
const DenseIndex m_col_strides;
|
||||
const DenseIndex m_in_plane_strides;
|
||||
const DenseIndex m_in_row_strides;
|
||||
const DenseIndex m_in_col_strides;
|
||||
const DenseIndex m_plane_inflate_strides;
|
||||
const DenseIndex m_row_inflate_strides;
|
||||
const DenseIndex m_col_inflate_strides;
|
||||
const bool m_padding_explicit;
|
||||
const DenseIndex m_padding_top_z;
|
||||
const DenseIndex m_padding_bottom_z;
|
||||
const DenseIndex m_padding_top;
|
||||
const DenseIndex m_padding_bottom;
|
||||
const DenseIndex m_padding_left;
|
||||
const DenseIndex m_padding_right;
|
||||
const PaddingType m_padding_type;
|
||||
const Scalar m_padding_value;
|
||||
};
|
||||
|
||||
|
||||
// Eval as rvalue
|
||||
template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device>
|
||||
struct TensorEvaluator<const TensorVolumePatchOp<Planes, Rows, Cols, ArgType>, Device>
|
||||
{
|
||||
typedef TensorVolumePatchOp<Planes, Rows, Cols, ArgType> XprType;
|
||||
typedef typename XprType::Index Index;
|
||||
static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
|
||||
static const int NumDims = NumInputDims + 1;
|
||||
typedef DSizes<Index, NumDims> Dimensions;
|
||||
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
|
||||
|
||||
enum {
|
||||
IsAligned = false,
|
||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||
BlockAccess = false,
|
||||
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||
CoordAccess = NumDims == 6,
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||
: m_impl(op.expression(), device)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(NumDims >= 5, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
m_paddingValue = op.padding_value();
|
||||
|
||||
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
||||
|
||||
// Cache a few variables.
|
||||
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
||||
m_inputDepth = input_dims[0];
|
||||
m_inputPlanes = input_dims[1];
|
||||
m_inputRows = input_dims[2];
|
||||
m_inputCols = input_dims[3];
|
||||
} else {
|
||||
m_inputDepth = input_dims[NumInputDims-1];
|
||||
m_inputPlanes = input_dims[NumInputDims-2];
|
||||
m_inputRows = input_dims[NumInputDims-3];
|
||||
m_inputCols = input_dims[NumInputDims-4];
|
||||
}
|
||||
|
||||
m_plane_strides = op.plane_strides();
|
||||
m_row_strides = op.row_strides();
|
||||
m_col_strides = op.col_strides();
|
||||
|
||||
// Input strides and effective input/patch size
|
||||
m_in_plane_strides = op.in_plane_strides();
|
||||
m_in_row_strides = op.in_row_strides();
|
||||
m_in_col_strides = op.in_col_strides();
|
||||
m_plane_inflate_strides = op.plane_inflate_strides();
|
||||
m_row_inflate_strides = op.row_inflate_strides();
|
||||
m_col_inflate_strides = op.col_inflate_strides();
|
||||
|
||||
// The "effective" spatial size after inflating data with zeros.
|
||||
m_input_planes_eff = (m_inputPlanes - 1) * m_plane_inflate_strides + 1;
|
||||
m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
|
||||
m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
|
||||
m_patch_planes_eff = op.patch_planes() + (op.patch_planes() - 1) * (m_in_plane_strides - 1);
|
||||
m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1);
|
||||
m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1);
|
||||
|
||||
if (op.padding_explicit()) {
|
||||
m_outputPlanes = numext::ceil((m_input_planes_eff + op.padding_top_z() + op.padding_bottom_z() - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides));
|
||||
m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
|
||||
m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
|
||||
m_planePaddingTop = op.padding_top_z();
|
||||
m_rowPaddingTop = op.padding_top();
|
||||
m_colPaddingLeft = op.padding_left();
|
||||
} else {
|
||||
// Computing padding from the type
|
||||
switch (op.padding_type()) {
|
||||
case PADDING_VALID:
|
||||
m_outputPlanes = numext::ceil((m_input_planes_eff - m_patch_planes_eff + 1.f) / static_cast<float>(m_plane_strides));
|
||||
m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast<float>(m_row_strides));
|
||||
m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast<float>(m_col_strides));
|
||||
m_planePaddingTop = 0;
|
||||
m_rowPaddingTop = 0;
|
||||
m_colPaddingLeft = 0;
|
||||
break;
|
||||
case PADDING_SAME: {
|
||||
m_outputPlanes = numext::ceil(m_input_planes_eff / static_cast<float>(m_plane_strides));
|
||||
m_outputRows = numext::ceil(m_input_rows_eff / static_cast<float>(m_row_strides));
|
||||
m_outputCols = numext::ceil(m_input_cols_eff / static_cast<float>(m_col_strides));
|
||||
const Index dz = m_outputPlanes * m_plane_strides + m_patch_planes_eff - 1 - m_input_planes_eff;
|
||||
const Index dy = m_outputRows * m_row_strides + m_patch_rows_eff - 1 - m_input_rows_eff;
|
||||
const Index dx = m_outputCols * m_col_strides + m_patch_cols_eff - 1 - m_input_cols_eff;
|
||||
m_planePaddingTop = dz - dz / 2;
|
||||
m_rowPaddingTop = dy - dy / 2;
|
||||
m_colPaddingLeft = dx - dx / 2;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
eigen_assert(false && "unexpected padding");
|
||||
}
|
||||
}
|
||||
eigen_assert(m_outputRows > 0);
|
||||
eigen_assert(m_outputCols > 0);
|
||||
eigen_assert(m_outputPlanes > 0);
|
||||
|
||||
// Dimensions for result of extraction.
|
||||
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
||||
// ColMajor
|
||||
// 0: depth
|
||||
// 1: patch_planes
|
||||
// 2: patch_rows
|
||||
// 3: patch_cols
|
||||
// 4: number of patches
|
||||
// 5 and beyond: anything else (such as batch).
|
||||
m_dimensions[0] = input_dims[0];
|
||||
m_dimensions[1] = op.patch_planes();
|
||||
m_dimensions[2] = op.patch_rows();
|
||||
m_dimensions[3] = op.patch_cols();
|
||||
m_dimensions[4] = m_outputPlanes * m_outputRows * m_outputCols;
|
||||
for (int i = 5; i < NumDims; ++i) {
|
||||
m_dimensions[i] = input_dims[i-1];
|
||||
}
|
||||
} else {
|
||||
// RowMajor
|
||||
// NumDims-1: depth
|
||||
// NumDims-2: patch_planes
|
||||
// NumDims-3: patch_rows
|
||||
// NumDims-4: patch_cols
|
||||
// NumDims-5: number of patches
|
||||
// NumDims-6 and beyond: anything else (such as batch).
|
||||
m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
|
||||
m_dimensions[NumDims-2] = op.patch_planes();
|
||||
m_dimensions[NumDims-3] = op.patch_rows();
|
||||
m_dimensions[NumDims-4] = op.patch_cols();
|
||||
m_dimensions[NumDims-5] = m_outputPlanes * m_outputRows * m_outputCols;
|
||||
for (int i = NumDims-6; i >= 0; --i) {
|
||||
m_dimensions[i] = input_dims[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Strides for the output tensor.
|
||||
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
||||
m_rowStride = m_dimensions[1];
|
||||
m_colStride = m_dimensions[2] * m_rowStride;
|
||||
m_patchStride = m_colStride * m_dimensions[3] * m_dimensions[0];
|
||||
m_otherStride = m_patchStride * m_dimensions[4];
|
||||
} else {
|
||||
m_rowStride = m_dimensions[NumDims-2];
|
||||
m_colStride = m_dimensions[NumDims-3] * m_rowStride;
|
||||
m_patchStride = m_colStride * m_dimensions[NumDims-4] * m_dimensions[NumDims-1];
|
||||
m_otherStride = m_patchStride * m_dimensions[NumDims-5];
|
||||
}
|
||||
|
||||
// Strides for navigating through the input tensor.
|
||||
m_planeInputStride = m_inputDepth;
|
||||
m_rowInputStride = m_inputDepth * m_inputPlanes;
|
||||
m_colInputStride = m_inputDepth * m_inputRows * m_inputPlanes;
|
||||
m_otherInputStride = m_inputDepth * m_inputRows * m_inputCols * m_inputPlanes;
|
||||
|
||||
m_outputPlanesRows = m_outputPlanes * m_outputRows;
|
||||
|
||||
// Fast representations of different variables.
|
||||
m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
|
||||
m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
|
||||
m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
|
||||
m_fastRowStride = internal::TensorIntDivisor<Index>(m_rowStride);
|
||||
m_fastInputRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
|
||||
m_fastInputColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
|
||||
m_fastInputPlaneStride = internal::TensorIntDivisor<Index>(m_plane_inflate_strides);
|
||||
m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
|
||||
m_fastOutputPlanes = internal::TensorIntDivisor<Index>(m_outputPlanes);
|
||||
m_fastOutputPlanesRows = internal::TensorIntDivisor<Index>(m_outputPlanesRows);
|
||||
|
||||
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
||||
m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
|
||||
} else {
|
||||
m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
|
||||
}
|
||||
}
|
||||
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
|
||||
m_impl.evalSubExprsIfNeeded(NULL);
|
||||
return true;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
||||
m_impl.cleanup();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
// Patch index corresponding to the passed in index.
|
||||
const Index patchIndex = index / m_fastPatchStride;
|
||||
|
||||
// Spatial offset within the patch. This has to be translated into 3D
|
||||
// coordinates within the patch.
|
||||
const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
|
||||
|
||||
// Batch, etc.
|
||||
const Index otherIndex = (NumDims == 5) ? 0 : index / m_fastOtherStride;
|
||||
const Index patch3DIndex = (NumDims == 5) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
|
||||
|
||||
// Calculate column index in the input original tensor.
|
||||
const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
|
||||
const Index colOffset = patchOffset / m_fastColStride;
|
||||
const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
|
||||
const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
|
||||
if (inputCol < 0 || inputCol >= m_input_cols_eff ||
|
||||
((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
|
||||
return Scalar(m_paddingValue);
|
||||
}
|
||||
|
||||
// Calculate row index in the original input tensor.
|
||||
const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
|
||||
const Index rowOffset = (patchOffset - colOffset * m_colStride) / m_fastRowStride;
|
||||
const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
|
||||
const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
|
||||
if (inputRow < 0 || inputRow >= m_input_rows_eff ||
|
||||
((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
|
||||
return Scalar(m_paddingValue);
|
||||
}
|
||||
|
||||
// Calculate plane index in the original input tensor.
|
||||
const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
|
||||
const Index planeOffset = patchOffset - colOffset * m_colStride - rowOffset * m_rowStride;
|
||||
const Index inputPlane = planeIndex * m_plane_strides + planeOffset * m_in_plane_strides - m_planePaddingTop;
|
||||
const Index origInputPlane = (m_plane_inflate_strides == 1) ? inputPlane : ((inputPlane >= 0) ? (inputPlane / m_fastInputPlaneStride) : 0);
|
||||
if (inputPlane < 0 || inputPlane >= m_input_planes_eff ||
|
||||
((m_plane_inflate_strides != 1) && (inputPlane != origInputPlane * m_plane_inflate_strides))) {
|
||||
return Scalar(m_paddingValue);
|
||||
}
|
||||
|
||||
const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
|
||||
const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
|
||||
|
||||
const Index inputIndex = depth +
|
||||
origInputRow * m_rowInputStride +
|
||||
origInputCol * m_colInputStride +
|
||||
origInputPlane * m_planeInputStride +
|
||||
otherIndex * m_otherInputStride;
|
||||
|
||||
return m_impl.coeff(inputIndex);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
||||
{
|
||||
const Index packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
|
||||
|
||||
if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1 ||
|
||||
m_in_plane_strides != 1 || m_plane_inflate_strides != 1) {
|
||||
return packetWithPossibleZero(index);
|
||||
}
|
||||
|
||||
const Index indices[2] = {index, index + packetSize - 1};
|
||||
const Index patchIndex = indices[0] / m_fastPatchStride;
|
||||
if (patchIndex != indices[1] / m_fastPatchStride) {
|
||||
return packetWithPossibleZero(index);
|
||||
}
|
||||
const Index otherIndex = (NumDims == 5) ? 0 : indices[0] / m_fastOtherStride;
|
||||
eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
|
||||
|
||||
// Find the offset of the element wrt the location of the first element.
|
||||
const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
|
||||
(indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
|
||||
|
||||
const Index patch3DIndex = (NumDims == 5) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
|
||||
eigen_assert(patch3DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
|
||||
|
||||
const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
|
||||
const Index colOffsets[2] = {
|
||||
patchOffsets[0] / m_fastColStride,
|
||||
patchOffsets[1] / m_fastColStride};
|
||||
|
||||
// Calculate col indices in the original input tensor.
|
||||
const Index inputCols[2] = {
|
||||
colIndex * m_col_strides + colOffsets[0] - m_colPaddingLeft,
|
||||
colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
|
||||
if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
|
||||
return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
|
||||
}
|
||||
|
||||
if (inputCols[0] != inputCols[1]) {
|
||||
return packetWithPossibleZero(index);
|
||||
}
|
||||
|
||||
const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
|
||||
const Index rowOffsets[2] = {
|
||||
(patchOffsets[0] - colOffsets[0] * m_colStride) / m_fastRowStride,
|
||||
(patchOffsets[1] - colOffsets[1] * m_colStride) / m_fastRowStride};
|
||||
eigen_assert(rowOffsets[0] <= rowOffsets[1]);
|
||||
// Calculate col indices in the original input tensor.
|
||||
const Index inputRows[2] = {
|
||||
rowIndex * m_row_strides + rowOffsets[0] - m_rowPaddingTop,
|
||||
rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
|
||||
|
||||
if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
|
||||
return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
|
||||
}
|
||||
|
||||
if (inputRows[0] != inputRows[1]) {
|
||||
return packetWithPossibleZero(index);
|
||||
}
|
||||
|
||||
const Index planeIndex = (patch3DIndex - m_outputPlanes * (colIndex * m_outputRows + rowIndex));
|
||||
const Index planeOffsets[2] = {
|
||||
patchOffsets[0] - colOffsets[0] * m_colStride - rowOffsets[0] * m_rowStride,
|
||||
patchOffsets[1] - colOffsets[1] * m_colStride - rowOffsets[1] * m_rowStride};
|
||||
eigen_assert(planeOffsets[0] <= planeOffsets[1]);
|
||||
const Index inputPlanes[2] = {
|
||||
planeIndex * m_plane_strides + planeOffsets[0] - m_planePaddingTop,
|
||||
planeIndex * m_plane_strides + planeOffsets[1] - m_planePaddingTop};
|
||||
|
||||
if (inputPlanes[1] < 0 || inputPlanes[0] >= m_inputPlanes) {
|
||||
return internal::pset1<PacketReturnType>(Scalar(m_paddingValue));
|
||||
}
|
||||
|
||||
if (inputPlanes[0] >= 0 && inputPlanes[1] < m_inputPlanes) {
|
||||
// no padding
|
||||
const int depth_index = static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
|
||||
const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
|
||||
const Index inputIndex = depth +
|
||||
inputRows[0] * m_rowInputStride +
|
||||
inputCols[0] * m_colInputStride +
|
||||
m_planeInputStride * inputPlanes[0] +
|
||||
otherIndex * m_otherInputStride;
|
||||
return m_impl.template packet<Unaligned>(inputIndex);
|
||||
}
|
||||
|
||||
return packetWithPossibleZero(index);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
|
||||
|
||||
const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
|
||||
|
||||
Index planePaddingTop() const { return m_planePaddingTop; }
|
||||
Index rowPaddingTop() const { return m_rowPaddingTop; }
|
||||
Index colPaddingLeft() const { return m_colPaddingLeft; }
|
||||
Index outputPlanes() const { return m_outputPlanes; }
|
||||
Index outputRows() const { return m_outputRows; }
|
||||
Index outputCols() const { return m_outputCols; }
|
||||
Index userPlaneStride() const { return m_plane_strides; }
|
||||
Index userRowStride() const { return m_row_strides; }
|
||||
Index userColStride() const { return m_col_strides; }
|
||||
Index userInPlaneStride() const { return m_in_plane_strides; }
|
||||
Index userInRowStride() const { return m_in_row_strides; }
|
||||
Index userInColStride() const { return m_in_col_strides; }
|
||||
Index planeInflateStride() const { return m_plane_inflate_strides; }
|
||||
Index rowInflateStride() const { return m_row_inflate_strides; }
|
||||
Index colInflateStride() const { return m_col_inflate_strides; }
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<Index, NumDims>& coords) const
|
||||
{
|
||||
// ColMajor
|
||||
// 0: depth, 1: patch_planes, 2: patch_rows, 3: patch_cols, 4: number of patches, 5: batches
|
||||
// RowMajor
|
||||
// 0: batches, 1: number of patches, 2: patch_cols , 3: patch_rows, 4: patch_planes, 5: depth
|
||||
const Index patch3DIndex = coords[static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 4 : 1];
|
||||
const Index colOffset = coords[static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 3 : 2];
|
||||
const Index rowOffset= coords[static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 2 : 3];
|
||||
const Index planeOffset = coords[static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 4];
|
||||
|
||||
array<Index, NumDims-1> inputCoords;
|
||||
|
||||
const Index colIndex = patch3DIndex / m_fastOutputPlanesRows;
|
||||
const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
|
||||
const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
|
||||
if (inputCol < 0 || inputCol >= m_input_cols_eff ||
|
||||
((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
|
||||
return Scalar(m_paddingValue);
|
||||
}
|
||||
|
||||
const Index rowIndex = (patch3DIndex - colIndex * m_outputPlanesRows) / m_fastOutputPlanes;
|
||||
const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
|
||||
const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
|
||||
if (inputRow < 0 || inputRow >= m_input_rows_eff ||
|
||||
((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
|
||||
return Scalar(m_paddingValue);
|
||||
}
|
||||
|
||||
const Index planeIndex = patch3DIndex - colIndex * m_outputPlanesRows - rowIndex * m_outputRows;
|
||||
const Index inputPlane = planeIndex * m_plane_strides + planeOffset * m_in_plane_strides - m_planePaddingTop;
|
||||
const Index origInputPlane = (m_plane_inflate_strides == 1) ? inputPlane : ((inputPlane >= 0) ? (inputPlane / m_fastInputPlaneStride) : 0);
|
||||
if (inputPlane < 0 || inputPlane >= m_input_planes_eff ||
|
||||
((m_plane_inflate_strides != 1) && (inputPlane != origInputPlane * m_plane_inflate_strides))) {
|
||||
return Scalar(m_paddingValue);
|
||||
}
|
||||
|
||||
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
||||
inputCoords[0] = coords[0]; // depth
|
||||
inputCoords[1] = origInputPlane;
|
||||
inputCoords[2] = origInputRow;
|
||||
inputCoords[3] = origInputCol;
|
||||
inputCoords[4] = coords[5]; // batch
|
||||
} else {
|
||||
inputCoords[4] = coords[5]; // depth
|
||||
inputCoords[3] = origInputPlane;
|
||||
inputCoords[2] = origInputRow;
|
||||
inputCoords[1] = origInputCol;
|
||||
inputCoords[0] = coords[0]; // batch
|
||||
}
|
||||
if (TensorEvaluator<ArgType, Device>::CoordAccess) {
|
||||
return m_impl.coeff(inputCoords);
|
||||
} else {
|
||||
Index inputIndex;
|
||||
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
||||
inputIndex =
|
||||
inputCoords[4] * m_otherInputStride +
|
||||
inputCoords[3] * m_colInputStride +
|
||||
inputCoords[2] * m_rowInputStride +
|
||||
inputCoords[1] * m_planeInputStride +
|
||||
inputCoords[0];
|
||||
} else {
|
||||
inputIndex =
|
||||
inputCoords[0] * m_otherInputStride +
|
||||
inputCoords[1] * m_colInputStride +
|
||||
inputCoords[2] * m_rowInputStride +
|
||||
inputCoords[3] * m_planeInputStride +
|
||||
inputCoords[4];
|
||||
}
|
||||
return m_impl.coeff(inputIndex);
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const
|
||||
{
|
||||
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||
EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type values[packetSize];
|
||||
for (int i = 0; i < packetSize; ++i) {
|
||||
values[i] = coeff(index+i);
|
||||
}
|
||||
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
||||
return rslt;
|
||||
}
|
||||
|
||||
Dimensions m_dimensions;
|
||||
|
||||
// Parameters passed to the costructor.
|
||||
Index m_plane_strides;
|
||||
Index m_row_strides;
|
||||
Index m_col_strides;
|
||||
|
||||
Index m_outputPlanes;
|
||||
Index m_outputRows;
|
||||
Index m_outputCols;
|
||||
|
||||
Index m_planePaddingTop;
|
||||
Index m_rowPaddingTop;
|
||||
Index m_colPaddingLeft;
|
||||
|
||||
Index m_in_plane_strides;
|
||||
Index m_in_row_strides;
|
||||
Index m_in_col_strides;
|
||||
|
||||
Index m_plane_inflate_strides;
|
||||
Index m_row_inflate_strides;
|
||||
Index m_col_inflate_strides;
|
||||
|
||||
// Cached input size.
|
||||
Index m_inputDepth;
|
||||
Index m_inputPlanes;
|
||||
Index m_inputRows;
|
||||
Index m_inputCols;
|
||||
|
||||
// Other cached variables.
|
||||
Index m_outputPlanesRows;
|
||||
|
||||
// Effective input/patch post-inflation size.
|
||||
Index m_input_planes_eff;
|
||||
Index m_input_rows_eff;
|
||||
Index m_input_cols_eff;
|
||||
Index m_patch_planes_eff;
|
||||
Index m_patch_rows_eff;
|
||||
Index m_patch_cols_eff;
|
||||
|
||||
// Strides for the output tensor.
|
||||
Index m_otherStride;
|
||||
Index m_patchStride;
|
||||
Index m_rowStride;
|
||||
Index m_colStride;
|
||||
|
||||
// Strides for the input tensor.
|
||||
Index m_planeInputStride;
|
||||
Index m_rowInputStride;
|
||||
Index m_colInputStride;
|
||||
Index m_otherInputStride;
|
||||
|
||||
internal::TensorIntDivisor<Index> m_fastOtherStride;
|
||||
internal::TensorIntDivisor<Index> m_fastPatchStride;
|
||||
internal::TensorIntDivisor<Index> m_fastColStride;
|
||||
internal::TensorIntDivisor<Index> m_fastRowStride;
|
||||
internal::TensorIntDivisor<Index> m_fastInputPlaneStride;
|
||||
internal::TensorIntDivisor<Index> m_fastInputRowStride;
|
||||
internal::TensorIntDivisor<Index> m_fastInputColStride;
|
||||
internal::TensorIntDivisor<Index> m_fastInputColsEff;
|
||||
internal::TensorIntDivisor<Index> m_fastOutputPlanesRows;
|
||||
internal::TensorIntDivisor<Index> m_fastOutputPlanes;
|
||||
internal::TensorIntDivisor<Index> m_fastOutputDepth;
|
||||
|
||||
Scalar m_paddingValue;
|
||||
|
||||
TensorEvaluator<ArgType, Device> m_impl;
|
||||
};
|
||||
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CXX11_TENSOR_TENSOR_VOLUME_PATCH_H
|
@ -125,6 +125,7 @@ if(EIGEN_TEST_CXX11)
|
||||
ei_add_test(cxx11_tensor_padding "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_patch "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_image_patch "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_volume_patch "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_reduction "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_shuffling "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_striding "-std=c++0x")
|
||||
|
112
unsupported/test/cxx11_tensor_volume_patch.cpp
Normal file
112
unsupported/test/cxx11_tensor_volume_patch.cpp
Normal file
@ -0,0 +1,112 @@
|
||||
#include "main.h"
|
||||
|
||||
#include <Eigen/CXX11/Tensor>
|
||||
|
||||
using Eigen::Tensor;
|
||||
|
||||
static void test_single_voxel_patch()
|
||||
{
|
||||
Tensor<float, 5> tensor(4,2,3,5,7);
|
||||
tensor.setRandom();
|
||||
Tensor<float, 5, RowMajor> tensor_row_major = tensor.swap_layout();
|
||||
|
||||
Tensor<float, 6> single_voxel_patch;
|
||||
single_voxel_patch = tensor.extract_volume_patches(1, 1, 1);
|
||||
VERIFY_IS_EQUAL(single_voxel_patch.dimension(0), 4);
|
||||
VERIFY_IS_EQUAL(single_voxel_patch.dimension(1), 1);
|
||||
VERIFY_IS_EQUAL(single_voxel_patch.dimension(2), 1);
|
||||
VERIFY_IS_EQUAL(single_voxel_patch.dimension(3), 1);
|
||||
VERIFY_IS_EQUAL(single_voxel_patch.dimension(4), 2 * 3 * 5);
|
||||
VERIFY_IS_EQUAL(single_voxel_patch.dimension(5), 7);
|
||||
|
||||
Tensor<float, 6, RowMajor> single_voxel_patch_row_major;
|
||||
single_voxel_patch_row_major = tensor_row_major.extract_volume_patches(1, 1, 1);
|
||||
VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(0), 7);
|
||||
VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(1), 2 * 3 * 5);
|
||||
VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(2), 1);
|
||||
VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(3), 1);
|
||||
VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(4), 1);
|
||||
VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(5), 4);
|
||||
|
||||
for (int i = 0; i < tensor.size(); ++i) {
|
||||
VERIFY_IS_EQUAL(tensor.data()[i], single_voxel_patch.data()[i]);
|
||||
VERIFY_IS_EQUAL(tensor_row_major.data()[i], single_voxel_patch_row_major.data()[i]);
|
||||
VERIFY_IS_EQUAL(tensor.data()[i], tensor_row_major.data()[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void test_entire_volume_patch()
|
||||
{
|
||||
const int depth = 4;
|
||||
const int patch_z = 2;
|
||||
const int patch_y = 3;
|
||||
const int patch_x = 5;
|
||||
const int batch = 7;
|
||||
|
||||
Tensor<float, 5> tensor(depth, patch_z, patch_y, patch_x, batch);
|
||||
tensor.setRandom();
|
||||
Tensor<float, 5, RowMajor> tensor_row_major = tensor.swap_layout();
|
||||
|
||||
Tensor<float, 6> entire_volume_patch;
|
||||
entire_volume_patch = tensor.extract_volume_patches(patch_z, patch_y, patch_x);
|
||||
VERIFY_IS_EQUAL(entire_volume_patch.dimension(0), depth);
|
||||
VERIFY_IS_EQUAL(entire_volume_patch.dimension(1), patch_z);
|
||||
VERIFY_IS_EQUAL(entire_volume_patch.dimension(2), patch_y);
|
||||
VERIFY_IS_EQUAL(entire_volume_patch.dimension(3), patch_x);
|
||||
VERIFY_IS_EQUAL(entire_volume_patch.dimension(4), patch_z * patch_y * patch_x);
|
||||
VERIFY_IS_EQUAL(entire_volume_patch.dimension(5), batch);
|
||||
|
||||
Tensor<float, 6, RowMajor> entire_volume_patch_row_major;
|
||||
entire_volume_patch_row_major = tensor_row_major.extract_volume_patches(patch_z, patch_y, patch_x);
|
||||
VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(0), batch);
|
||||
VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(1), patch_z * patch_y * patch_x);
|
||||
VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(2), patch_x);
|
||||
VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(3), patch_y);
|
||||
VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(4), patch_z);
|
||||
VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(5), depth);
|
||||
|
||||
const int dz = patch_z - 1;
|
||||
const int dy = patch_y - 1;
|
||||
const int dx = patch_x - 1;
|
||||
|
||||
const int forward_pad_z = dz - dz / 2;
|
||||
const int forward_pad_y = dy - dy / 2;
|
||||
const int forward_pad_x = dx - dx / 2;
|
||||
|
||||
for (int pz = 0; pz < patch_z; pz++) {
|
||||
for (int py = 0; py < patch_y; py++) {
|
||||
for (int px = 0; px < patch_x; px++) {
|
||||
const int patchId = pz + patch_z * (py + px * patch_y);
|
||||
for (int z = 0; z < patch_z; z++) {
|
||||
for (int y = 0; y < patch_y; y++) {
|
||||
for (int x = 0; x < patch_x; x++) {
|
||||
for (int b = 0; b < batch; b++) {
|
||||
for (int d = 0; d < depth; d++) {
|
||||
float expected = 0.0f;
|
||||
float expected_row_major = 0.0f;
|
||||
const int eff_z = z - forward_pad_z + pz;
|
||||
const int eff_y = y - forward_pad_y + py;
|
||||
const int eff_x = x - forward_pad_x + px;
|
||||
if (eff_z >= 0 && eff_y >= 0 && eff_x >= 0 &&
|
||||
eff_z < patch_z && eff_y < patch_y && eff_x < patch_x) {
|
||||
expected = tensor(d, eff_z, eff_y, eff_x, b);
|
||||
expected_row_major = tensor_row_major(b, eff_x, eff_y, eff_z, d);
|
||||
}
|
||||
VERIFY_IS_EQUAL(entire_volume_patch(d, z, y, x, patchId, b), expected);
|
||||
VERIFY_IS_EQUAL(entire_volume_patch_row_major(b, patchId, x, y, z, d), expected_row_major);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void test_cxx11_tensor_volume_patch()
|
||||
{
|
||||
CALL_SUBTEST(test_single_voxel_patch());
|
||||
CALL_SUBTEST(test_entire_volume_patch());
|
||||
}
|
Loading…
Reference in New Issue
Block a user