Reimplement fitHyperplane such that the fit is done in a total LS sense

(use eigen decomposition).
Added optional feedback on the stability of the actual fit (think about fitting a 3D plane
on data lying on a line...)
This commit is contained in:
Gael Guennebaud 2008-08-22 00:09:46 +00:00
parent 0998c51d1f
commit db628c6ad7

View File

@ -145,54 +145,54 @@ void linearRegression(int numPoints,
* Thus, the vector \a retCoefficients has size \f$n+1\f$, which is another
* difference from linearRegression().
*
* This functions proceeds by first determining which coord has the smallest variance,
* and then calls linearRegression() to express that coord as a function of the other ones.
* In practice, this function performs an hyper-plane fit in a total least square sense
* via the following steps:
* 1 - center the data to the mean
* 2 - compute the covariance matrix
* 3 - pick the eigenvector corresponding to the smallest eigenvalue of the covariance matrix
* The ratio of the smallest eigenvalue and the second one gives us a hint about the relevance
* of the solution. This value is optionally returned in \a soundness.
*
* \sa linearRegression()
*/
template<typename VectorType, typename BigVectorType>
void fitHyperplane(int numPoints,
VectorType **points,
BigVectorType *result)
BigVectorType *result,
typename NumTraits<typename VectorType::Scalar>::Real* soundness = 0)
{
typedef typename VectorType::Scalar Scalar;
typedef Matrix<Scalar,VectorType::SizeAtCompileTime,VectorType::SizeAtCompileTime> CovMatrixType;
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(BigVectorType)
ei_assert(numPoints >= 1);
int size = points[0]->size();
ei_assert(size+1 == result->size());
// now let's find out which coord varies the least. This is
// approximative. All that matters is that we don't pick a coordinate
// that varies orders of magnitude more than another one.
VectorType mean(size);
Matrix<typename NumTraits<Scalar>::Real,
VectorType::RowsAtCompileTime, VectorType::ColsAtCompileTime,
VectorType::MaxRowsAtCompileTime, VectorType::MaxColsAtCompileTime
> variance(size);
mean.setZero();
variance.setZero();
// compue the mean of the data
VectorType mean = VectorType::Zero(size);
for(int i = 0; i < numPoints; i++)
mean += *(points[i]);
mean /= numPoints;
for(int j = 0; j < size; j++)
// compute the covariance matrix
CovMatrixType covMat = CovMatrixType::Zero(size, size);
VectorType remean = VectorType::Zero(size);
for(int i = 0; i < numPoints; i++)
{
for(int i = 0; i < numPoints; i++)
variance.coeffRef(j) += ei_abs2(points[i]->coeff(j) - mean.coeff(j));
VectorType diff = (*(points[i]) - mean).conjugate();
covMat += diff * diff.adjoint();
}
// now we just have to pick the eigen vector with smallest eigen value
SelfAdjointEigenSolver<CovMatrixType> eig(covMat);
result->start(size) = eig.eigenvectors().col(0);
if (soundness)
*soundness = eig.eigenvalues().coeff(0)/eig.eigenvalues().coeff(1);
int coord_min_variance;
variance.minCoeff(&coord_min_variance);
// let's now perform a linear regression with respect to that
// not-too-much-varying coord
VectorType affine(size);
linearRegression(numPoints, points, &affine, coord_min_variance);
if(coord_min_variance>0)
result->start(coord_min_variance) = affine.start(coord_min_variance);
result->coeffRef(coord_min_variance) = static_cast<Scalar>(-1);
result->end(size-coord_min_variance) = affine.end(size-coord_min_variance);
// let's compute the constant coefficient such that the
// plane pass trough the mean point:
result->coeffRef(size) = - (result->start(size).cwise()* mean).sum();
}