Update ThreadLocal to use separate Initialize/Release callables

This commit is contained in:
Eugene Zhulenev 2019-09-10 16:13:32 -07:00
parent e3dec4dcc1
commit d918bd9a8b
2 changed files with 80 additions and 73 deletions

View File

@ -64,27 +64,38 @@
namespace Eigen {
// Thread local container for elements of type Factory::T, that does not use
// thread local storage. It will lazily initialize elements for each thread that
// accesses this object. As long as the number of unique threads accessing this
// storage is smaller than `kAllocationMultiplier * num_threads`, it is
// lock-free and wait-free. Otherwise it will use a mutex for synchronization.
namespace internal {
template <typename T>
struct ThreadLocalNoOpInitialize {
void operator()(T&) const {}
};
template <typename T>
struct ThreadLocalNoOpRelease {
void operator()(T&) const {}
};
} // namespace internal
// Thread local container for elements of type T, that does not use thread local
// storage. As long as the number of unique threads accessing this storage
// is smaller than `capacity_`, it is lock-free and wait-free. Otherwise it will
// use a mutex for synchronization.
//
// Type `T` has to be default constructible, and by default each thread will get
// a default constructed value. It is possible to specify custom `initialize`
// callable, that will be called lazily from each thread accessing this object,
// and will be passed a default initialized object of type `T`. Also it's
// possible to pass a custom `release` callable, that will be invoked before
// calling ~T().
//
// Example:
//
// struct Counter {
// int value;
// int value = 0;
// }
//
// struct CounterFactory {
// using T = Counter;
//
// Counter Allocate() { return {0}; }
// void Release(Counter&) {}
// };
//
// CounterFactory factory;
// Eigen::ThreadLocal<CounterFactory> counter(factory, 10);
// Eigen::ThreadLocal<Counter> counter(10);
//
// // Each thread will have access to it's own counter object.
// Counter& cnt = counter.local();
@ -98,40 +109,43 @@ namespace Eigen {
// Somewhat similar to TBB thread local storage, with similar restrictions:
// https://www.threadingbuildingblocks.org/docs/help/reference/thread_local_storage/enumerable_thread_specific_cls.html
//
template<typename Factory>
template <typename T,
typename Initialize = internal::ThreadLocalNoOpInitialize<T>,
typename Release = internal::ThreadLocalNoOpRelease<T>>
class ThreadLocal {
// We allocate larger storage for thread local data, than the number of
// threads, because thread pool size might grow, or threads outside of a
// thread pool might steal the work. We still expect this number to be of the
// same order of magnitude as the original `num_threads`.
static constexpr int kAllocationMultiplier = 4;
using T = typename Factory::T;
// We preallocate default constructed elements in MaxSizedVector.
static_assert(std::is_default_constructible<T>::value,
"ThreadLocal data type must be default constructible");
public:
explicit ThreadLocal(Factory& factory, int num_threads)
: factory_(factory),
num_records_(kAllocationMultiplier * num_threads),
data_(num_records_),
ptr_(num_records_),
explicit ThreadLocal(int capacity)
: ThreadLocal(capacity, internal::ThreadLocalNoOpInitialize<T>(),
internal::ThreadLocalNoOpRelease<T>()) {}
ThreadLocal(int capacity, Initialize initialize)
: ThreadLocal(capacity, std::move(initialize),
internal::ThreadLocalNoOpRelease<T>()) {}
ThreadLocal(int capacity, Initialize initialize, Release release)
: initialize_(std::move(initialize)),
release_(std::move(release)),
capacity_(capacity),
data_(capacity_),
ptr_(capacity_),
filled_records_(0) {
eigen_assert(num_threads >= 0);
data_.resize(num_records_);
for (int i = 0; i < num_records_; ++i) {
eigen_assert(capacity_ >= 0);
data_.resize(capacity_);
for (int i = 0; i < capacity_; ++i) {
ptr_.emplace_back(nullptr);
}
}
T& local() {
std::thread::id this_thread = std::this_thread::get_id();
if (num_records_ == 0) return SpilledLocal(this_thread);
if (capacity_ == 0) return SpilledLocal(this_thread);
std::size_t h = std::hash<std::thread::id>()(this_thread);
const int start_idx = h % num_records_;
const int start_idx = h % capacity_;
// NOTE: From the definition of `std::this_thread::get_id()` it is
// guaranteed that we never can have concurrent insertions with the same key
@ -147,7 +161,7 @@ class ThreadLocal {
if (record.thread_id == this_thread) return record.value;
idx += 1;
if (idx >= num_records_) idx -= num_records_;
if (idx >= capacity_) idx -= capacity_;
if (idx == start_idx) break;
}
@ -155,8 +169,7 @@ class ThreadLocal {
// table at `idx`, or we did a full traversal and table is full.
// If lock-free storage is full, fallback on mutex.
if (filled_records_.load() >= num_records_)
return SpilledLocal(this_thread);
if (filled_records_.load() >= capacity_) return SpilledLocal(this_thread);
// We double check that we still have space to insert an element into a lock
// free storage. If old value in `filled_records_` is larger than the
@ -164,11 +177,12 @@ class ThreadLocal {
// we were traversing lookup table.
int insertion_index =
filled_records_.fetch_add(1, std::memory_order_relaxed);
if (insertion_index >= num_records_) return SpilledLocal(this_thread);
if (insertion_index >= capacity_) return SpilledLocal(this_thread);
// At this point it's guaranteed that we can access to
// data_[insertion_index_] without a data race.
data_[insertion_index] = {this_thread, factory_.Allocate()};
data_[insertion_index].thread_id = this_thread;
initialize_(data_[insertion_index].value);
// That's the pointer we'll put into the lookup table.
ThreadIdAndValue* inserted = &data_[insertion_index];
@ -187,7 +201,7 @@ class ThreadLocal {
idx = insertion_idx;
while (ptr_[idx].load() != nullptr) {
idx += 1;
if (idx >= num_records_) idx -= num_records_;
if (idx >= capacity_) idx -= capacity_;
// If we did a full loop, it means that we don't have any free entries
// in the lookup table, and this means that something is terribly wrong.
eigen_assert(idx != insertion_idx);
@ -200,7 +214,7 @@ class ThreadLocal {
}
// WARN: It's not thread safe to call it concurrently with `local()`.
void ForEach(std::function<void(std::thread::id, T & )> f) {
void ForEach(std::function<void(std::thread::id, T&)> f) {
// Reading directly from `data_` is unsafe, because only CAS to the
// record in `ptr_` makes all changes visible to other threads.
for (auto& ptr : ptr_) {
@ -210,7 +224,7 @@ class ThreadLocal {
}
// We did not spill into the map based storage.
if (filled_records_.load(std::memory_order_relaxed) < num_records_) return;
if (filled_records_.load(std::memory_order_relaxed) < capacity_) return;
// Adds a happens before edge from the last call to SpilledLocal().
std::unique_lock<std::mutex> lock(mu_);
@ -226,16 +240,16 @@ class ThreadLocal {
for (auto& ptr : ptr_) {
ThreadIdAndValue* record = ptr.load();
if (record == nullptr) continue;
factory_.Release(record->value);
release_(record->value);
}
// We did not spill into the map based storage.
if (filled_records_.load(std::memory_order_relaxed) < num_records_) return;
if (filled_records_.load(std::memory_order_relaxed) < capacity_) return;
// Adds a happens before edge from the last call to SpilledLocal().
std::unique_lock<std::mutex> lock(mu_);
for (auto& kv : per_thread_map_) {
factory_.Release(kv.second);
release_(kv.second);
}
}
@ -251,16 +265,18 @@ class ThreadLocal {
auto it = per_thread_map_.find(this_thread);
if (it == per_thread_map_.end()) {
auto result = per_thread_map_.emplace(this_thread, factory_.Allocate());
auto result = per_thread_map_.emplace(this_thread, T());
eigen_assert(result.second);
initialize_((*result.first).second);
return (*result.first).second;
} else {
return it->second;
}
}
Factory& factory_;
const int num_records_;
Initialize initialize_;
Release release_;
const int capacity_;
// Storage that backs lock-free lookup table `ptr_`. Records stored in this
// storage contiguously starting from index 0.
@ -274,7 +290,7 @@ class ThreadLocal {
std::atomic<int> filled_records_;
// We fallback on per thread map if lock-free storage is full. In practice
// this should never happen, if `num_threads` is a reasonable estimate of the
// this should never happen, if `capacity_` is a reasonable estimate of the
// number of threads running in a system.
std::mutex mu_; // Protects per_thread_map_.
std::unordered_map<std::thread::id, T> per_thread_map_;

View File

@ -13,36 +13,30 @@
#include "main.h"
#include <Eigen/CXX11/ThreadPool>
class Counter {
public:
Counter() : Counter(0) {}
explicit Counter(int value)
: created_by_(std::this_thread::get_id()), value_(value) {}
struct Counter {
Counter() = default;
void inc() {
// Check that mutation happens only in a thread that created this counter.
VERIFY_IS_EQUAL(std::this_thread::get_id(), created_by_);
value_++;
VERIFY_IS_EQUAL(std::this_thread::get_id(), created_by);
counter_value++;
}
int value() { return value_; }
int value() { return counter_value; }
private:
std::thread::id created_by_;
int value_;
std::thread::id created_by;
int counter_value = 0;
};
struct CounterFactory {
using T = Counter;
T Allocate() { return Counter(0); }
void Release(T&) {}
struct InitCounter {
void operator()(Counter& counter) {
counter.created_by = std::this_thread::get_id();
}
};
void test_simple_thread_local() {
CounterFactory factory;
int num_threads = internal::random<int>(4, 32);
Eigen::ThreadPool thread_pool(num_threads);
Eigen::ThreadLocal<CounterFactory> counter(factory, num_threads);
Eigen::ThreadLocal<Counter, InitCounter> counter(num_threads, InitCounter());
int num_tasks = 3 * num_threads;
Eigen::Barrier barrier(num_tasks);
@ -64,8 +58,7 @@ void test_simple_thread_local() {
}
void test_zero_sized_thread_local() {
CounterFactory factory;
Eigen::ThreadLocal<CounterFactory> counter(factory, 0);
Eigen::ThreadLocal<Counter, InitCounter> counter(0, InitCounter());
Counter& local = counter.local();
local.inc();
@ -81,10 +74,9 @@ void test_zero_sized_thread_local() {
// All thread local values fits into the lock-free storage.
void test_large_number_of_tasks_no_spill() {
CounterFactory factory;
int num_threads = internal::random<int>(4, 32);
Eigen::ThreadPool thread_pool(num_threads);
Eigen::ThreadLocal<CounterFactory> counter(factory, num_threads);
Eigen::ThreadLocal<Counter, InitCounter> counter(num_threads, InitCounter());
int num_tasks = 10000;
Eigen::Barrier barrier(num_tasks);
@ -117,10 +109,9 @@ void test_large_number_of_tasks_no_spill() {
// Lock free thread local storage is too small to fit all the unique threads,
// and it spills to a map guarded by a mutex.
void test_large_number_of_tasks_with_spill() {
CounterFactory factory;
int num_threads = internal::random<int>(4, 32);
Eigen::ThreadPool thread_pool(num_threads);
Eigen::ThreadLocal<CounterFactory> counter(factory, 1); // This is too small
Eigen::ThreadLocal<Counter, InitCounter> counter(1, InitCounter());
int num_tasks = 10000;
Eigen::Barrier barrier(num_tasks);