mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
Implement complete orthogonal decomposition in Eigen.
This commit is contained in:
parent
093f2b3c01
commit
d904c8ac8f
1
Eigen/QR
1
Eigen/QR
@ -34,6 +34,7 @@
|
||||
#include "src/QR/HouseholderQR.h"
|
||||
#include "src/QR/FullPivHouseholderQR.h"
|
||||
#include "src/QR/ColPivHouseholderQR.h"
|
||||
#include "src/QR/CompleteOrthogonalDecomposition.h"
|
||||
#ifdef EIGEN_USE_LAPACKE
|
||||
#include "src/QR/HouseholderQR_MKL.h"
|
||||
#include "src/QR/ColPivHouseholderQR_MKL.h"
|
||||
|
@ -366,6 +366,7 @@ template<typename Derived> class MatrixBase
|
||||
inline const HouseholderQR<PlainObject> householderQr() const;
|
||||
inline const ColPivHouseholderQR<PlainObject> colPivHouseholderQr() const;
|
||||
inline const FullPivHouseholderQR<PlainObject> fullPivHouseholderQr() const;
|
||||
inline const CompleteOrthogonalDecomposition<PlainObject> completeOrthogonalDecomposition() const;
|
||||
|
||||
/////////// Eigenvalues module ///////////
|
||||
|
||||
|
@ -248,6 +248,7 @@ template<typename MatrixType> struct inverse_impl;
|
||||
template<typename MatrixType> class HouseholderQR;
|
||||
template<typename MatrixType> class ColPivHouseholderQR;
|
||||
template<typename MatrixType> class FullPivHouseholderQR;
|
||||
template<typename MatrixType> class CompleteOrthogonalDecomposition;
|
||||
template<typename MatrixType, int QRPreconditioner = ColPivHouseholderQRPreconditioner> class JacobiSVD;
|
||||
template<typename MatrixType> class BDCSVD;
|
||||
template<typename MatrixType, int UpLo = Lower> class LLT;
|
||||
|
@ -404,6 +404,8 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
||||
|
||||
protected:
|
||||
|
||||
friend class CompleteOrthogonalDecomposition<MatrixType>;
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
|
538
Eigen/src/QR/CompleteOrthogonalDecomposition.h
Normal file
538
Eigen/src/QR/CompleteOrthogonalDecomposition.h
Normal file
@ -0,0 +1,538 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2016 Rasmus Munk Larsen <rmlarsen@google.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
|
||||
#define EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template <typename _MatrixType>
|
||||
struct traits<CompleteOrthogonalDecomposition<_MatrixType> >
|
||||
: traits<_MatrixType> {
|
||||
enum { Flags = 0 };
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \ingroup QR_Module
|
||||
*
|
||||
* \class CompleteOrthogonalDecomposition
|
||||
*
|
||||
* \brief Complete orthogonal decomposition (COD) of a matrix.
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the COD.
|
||||
*
|
||||
* This class performs a rank-revealing complete ortogonal decomposition of a
|
||||
* matrix \b A into matrices \b P, \b Q, \b T, and \b Z such that
|
||||
* \f[
|
||||
* \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \begin{matrix} \mathbf{T} &
|
||||
* \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{matrix} \, \mathbf{Z}
|
||||
* \f]
|
||||
* by using Householder transformations. Here, \b P is a permutation matrix,
|
||||
* \b Q and \b Z are unitary matrices and \b T an upper triangular matrix of
|
||||
* size rank-by-rank. \b A may be rank deficient.
|
||||
*
|
||||
* \sa MatrixBase::completeOrthogonalDecomposition()
|
||||
*/
|
||||
template <typename _MatrixType>
|
||||
class CompleteOrthogonalDecomposition {
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options,
|
||||
MaxRowsAtCompileTime, MaxRowsAtCompileTime>
|
||||
MatrixQType;
|
||||
typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
|
||||
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime>
|
||||
PermutationType;
|
||||
typedef typename internal::plain_row_type<MatrixType, Index>::type
|
||||
IntRowVectorType;
|
||||
typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
|
||||
typedef typename internal::plain_row_type<MatrixType, RealScalar>::type
|
||||
RealRowVectorType;
|
||||
typedef HouseholderSequence<
|
||||
MatrixType, typename internal::remove_all<
|
||||
typename HCoeffsType::ConjugateReturnType>::type>
|
||||
HouseholderSequenceType;
|
||||
|
||||
private:
|
||||
typedef typename PermutationType::Index PermIndexType;
|
||||
|
||||
public:
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via
|
||||
* \c CompleteOrthogonalDecomposition::compute(const* MatrixType&).
|
||||
*/
|
||||
CompleteOrthogonalDecomposition() : m_cpqr(), m_zCoeffs(), m_temp() {}
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
* Like the default constructor but with preallocation of the internal data
|
||||
* according to the specified problem \a size.
|
||||
* \sa CompleteOrthogonalDecomposition()
|
||||
*/
|
||||
CompleteOrthogonalDecomposition(Index rows, Index cols)
|
||||
: m_cpqr(rows, cols), m_zCoeffs((std::min)(rows, cols)), m_temp(cols) {}
|
||||
|
||||
/** \brief Constructs a complete orthogonal decomposition from a given
|
||||
* matrix.
|
||||
*
|
||||
* This constructor computes the complete orthogonal decomposition of the
|
||||
* matrix \a matrix by calling the method compute(). The default
|
||||
* threshold for rank determination will be used. It is a short cut for:
|
||||
*
|
||||
* \code
|
||||
* CompleteOrthogonalDecomposition<MatrixType> cod(matrix.rows(),
|
||||
* matrix.cols());
|
||||
* cod.setThreshold(Default);
|
||||
* cod.compute(matrix);
|
||||
* \endcode
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
template <typename InputType>
|
||||
explicit CompleteOrthogonalDecomposition(const EigenBase<InputType>& matrix)
|
||||
: m_cpqr(matrix.rows(), matrix.cols()),
|
||||
m_zCoeffs((std::min)(matrix.rows(), matrix.cols())),
|
||||
m_temp(matrix.cols()) {
|
||||
compute(matrix.derived());
|
||||
}
|
||||
|
||||
/** This method computes the minimum-norm solution X to a least squares
|
||||
* problem \f[\mathrm{minimize} ||A X - B|| \f], where \b A is the matrix of
|
||||
* which \c *this is the complete orthogonal decomposition.
|
||||
*
|
||||
* \param B the right-hand sides of the problem to solve.
|
||||
*
|
||||
* \returns a solution.
|
||||
*
|
||||
*/
|
||||
template <typename Rhs>
|
||||
inline const Solve<CompleteOrthogonalDecomposition, Rhs> solve(
|
||||
const MatrixBase<Rhs>& b) const {
|
||||
eigen_assert(m_cpqr.m_isInitialized &&
|
||||
"CompleteOrthogonalDecomposition is not initialized.");
|
||||
return Solve<CompleteOrthogonalDecomposition, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
HouseholderSequenceType householderQ(void) const;
|
||||
HouseholderSequenceType matrixQ(void) const { return m_cpqr.householderQ(); }
|
||||
|
||||
/** Overwrites \b rhs with \f$ \mathbf{Z}^* * \mathbf{rhs} \f$.
|
||||
*/
|
||||
template <typename Rhs>
|
||||
void applyZAdjointOnTheLeftInPlace(Rhs& rhs) const;
|
||||
|
||||
/** \returns the matrix \b Z.
|
||||
*/
|
||||
MatrixType matrixZ() const {
|
||||
MatrixType Z = MatrixType::Identity(m_cpqr.cols(), m_cpqr.cols());
|
||||
applyZAdjointOnTheLeftInPlace(Z);
|
||||
return Z.adjoint();
|
||||
}
|
||||
|
||||
/** \returns a reference to the matrix where the complete orthogonal
|
||||
* decomposition is stored
|
||||
*/
|
||||
const MatrixType& matrixQTZ() const { return m_cpqr.matrixQR(); }
|
||||
|
||||
/** \returns a reference to the matrix where the complete orthogonal
|
||||
* decomposition is stored.
|
||||
* \warning The strict lower part and \code cols() - rank() \endcode right
|
||||
* columns of this matrix contains internal values.
|
||||
* Only the upper triangular part should be referenced. To get it, use
|
||||
* \code matrixT().template triangularView<Upper>() \endcode
|
||||
* For rank-deficient matrices, use
|
||||
* \code
|
||||
* matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
|
||||
* \endcode
|
||||
*/
|
||||
const MatrixType& matrixT() const { return m_cpqr.matrixQR(); }
|
||||
|
||||
template <typename InputType>
|
||||
CompleteOrthogonalDecomposition& compute(const EigenBase<InputType>& matrix);
|
||||
|
||||
/** \returns a const reference to the column permutation matrix */
|
||||
const PermutationType& colsPermutation() const {
|
||||
return m_cpqr.colsPermutation();
|
||||
}
|
||||
|
||||
/** \returns the absolute value of the determinant of the matrix of which
|
||||
* *this is the complete orthogonal decomposition. It has only linear
|
||||
* complexity (that is, O(n) where n is the dimension of the square matrix)
|
||||
* as the complete orthogonal decomposition has already been computed.
|
||||
*
|
||||
* \note This is only for square matrices.
|
||||
*
|
||||
* \warning a determinant can be very big or small, so for matrices
|
||||
* of large enough dimension, there is a risk of overflow/underflow.
|
||||
* One way to work around that is to use logAbsDeterminant() instead.
|
||||
*
|
||||
* \sa logAbsDeterminant(), MatrixBase::determinant()
|
||||
*/
|
||||
typename MatrixType::RealScalar absDeterminant() const;
|
||||
|
||||
/** \returns the natural log of the absolute value of the determinant of the
|
||||
* matrix of which *this is the complete orthogonal decomposition. It has
|
||||
* only linear complexity (that is, O(n) where n is the dimension of the
|
||||
* square matrix) as the complete orthogonal decomposition has already been
|
||||
* computed.
|
||||
*
|
||||
* \note This is only for square matrices.
|
||||
*
|
||||
* \note This method is useful to work around the risk of overflow/underflow
|
||||
* that's inherent to determinant computation.
|
||||
*
|
||||
* \sa absDeterminant(), MatrixBase::determinant()
|
||||
*/
|
||||
typename MatrixType::RealScalar logAbsDeterminant() const;
|
||||
|
||||
/** \returns the rank of the matrix of which *this is the complete orthogonal
|
||||
* decomposition.
|
||||
*
|
||||
* \note This method has to determine which pivots should be considered
|
||||
* nonzero. For that, it uses the threshold value that you can control by
|
||||
* calling setThreshold(const RealScalar&).
|
||||
*/
|
||||
inline Index rank() const { return m_cpqr.rank(); }
|
||||
|
||||
/** \returns the dimension of the kernel of the matrix of which *this is the
|
||||
* complete orthogonal decomposition.
|
||||
*
|
||||
* \note This method has to determine which pivots should be considered
|
||||
* nonzero. For that, it uses the threshold value that you can control by
|
||||
* calling setThreshold(const RealScalar&).
|
||||
*/
|
||||
inline Index dimensionOfKernel() const { return m_cpqr.dimensionOfKernel(); }
|
||||
|
||||
/** \returns true if the matrix of which *this is the decomposition represents
|
||||
* an injective linear map, i.e. has trivial kernel; false otherwise.
|
||||
*
|
||||
* \note This method has to determine which pivots should be considered
|
||||
* nonzero. For that, it uses the threshold value that you can control by
|
||||
* calling setThreshold(const RealScalar&).
|
||||
*/
|
||||
inline bool isInjective() const { return m_cpqr.isInjective(); }
|
||||
|
||||
/** \returns true if the matrix of which *this is the decomposition represents
|
||||
* a surjective linear map; false otherwise.
|
||||
*
|
||||
* \note This method has to determine which pivots should be considered
|
||||
* nonzero. For that, it uses the threshold value that you can control by
|
||||
* calling setThreshold(const RealScalar&).
|
||||
*/
|
||||
inline bool isSurjective() const { return m_cpqr.isSurjective(); }
|
||||
|
||||
/** \returns true if the matrix of which *this is the complete orthogonal
|
||||
* decomposition is invertible.
|
||||
*
|
||||
* \note This method has to determine which pivots should be considered
|
||||
* nonzero. For that, it uses the threshold value that you can control by
|
||||
* calling setThreshold(const RealScalar&).
|
||||
*/
|
||||
inline bool isInvertible() const { return m_cpqr.isInvertible(); }
|
||||
|
||||
/** \returns the inverse of the matrix of which *this is the complete
|
||||
* orthogonal decomposition.
|
||||
*
|
||||
* \note If this matrix is not invertible, the returned matrix has undefined
|
||||
* coefficients. Use isInvertible() to first determine whether this matrix is
|
||||
* invertible.
|
||||
*/
|
||||
|
||||
// TODO(rmlarsen): Add method for pseudo-inverse.
|
||||
// inline const
|
||||
// internal::solve_retval<CompleteOrthogonalDecomposition, typename
|
||||
// MatrixType::IdentityReturnType>
|
||||
// inverse() const
|
||||
// {
|
||||
// eigen_assert(m_isInitialized && "CompleteOrthogonalDecomposition is not
|
||||
// initialized.");
|
||||
// return internal::solve_retval<CompleteOrthogonalDecomposition,typename
|
||||
// MatrixType::IdentityReturnType>
|
||||
// (*this, MatrixType::Identity(m_cpqr.rows(), m_cpqr.cols()));
|
||||
// }
|
||||
|
||||
inline Index rows() const { return m_cpqr.rows(); }
|
||||
inline Index cols() const { return m_cpqr.cols(); }
|
||||
|
||||
/** \returns a const reference to the vector of Householder coefficients used
|
||||
* to represent the factor \c Q.
|
||||
*
|
||||
* For advanced uses only.
|
||||
*/
|
||||
inline const HCoeffsType& hCoeffs() const { return m_cpqr.hCoeffs(); }
|
||||
|
||||
/** \returns a const reference to the vector of Householder coefficients
|
||||
* used to represent the factor \c Z.
|
||||
*
|
||||
* For advanced uses only.
|
||||
*/
|
||||
const HCoeffsType& zCoeffs() const { return m_zCoeffs; }
|
||||
|
||||
/** Allows to prescribe a threshold to be used by certain methods, such as
|
||||
* rank(), who need to determine when pivots are to be considered nonzero.
|
||||
* Most be called before calling compute().
|
||||
*
|
||||
* When it needs to get the threshold value, Eigen calls threshold(). By
|
||||
* default, this uses a formula to automatically determine a reasonable
|
||||
* threshold. Once you have called the present method
|
||||
* setThreshold(const RealScalar&), your value is used instead.
|
||||
*
|
||||
* \param threshold The new value to use as the threshold.
|
||||
*
|
||||
* A pivot will be considered nonzero if its absolute value is strictly
|
||||
* greater than
|
||||
* \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
|
||||
* where maxpivot is the biggest pivot.
|
||||
*
|
||||
* If you want to come back to the default behavior, call
|
||||
* setThreshold(Default_t)
|
||||
*/
|
||||
CompleteOrthogonalDecomposition& setThreshold(const RealScalar& threshold) {
|
||||
m_cpqr.setThreshold(threshold);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Allows to come back to the default behavior, letting Eigen use its default
|
||||
* formula for determining the threshold.
|
||||
*
|
||||
* You should pass the special object Eigen::Default as parameter here.
|
||||
* \code qr.setThreshold(Eigen::Default); \endcode
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
CompleteOrthogonalDecomposition& setThreshold(Default_t) {
|
||||
m_cpqr.setThreshold(Default);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Returns the threshold that will be used by certain methods such as rank().
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
RealScalar threshold() const { return m_cpqr.threshold(); }
|
||||
|
||||
/** \returns the number of nonzero pivots in the complete orthogonal
|
||||
* decomposition.
|
||||
* Here nonzero is meant in the exact sense, not in a fuzzy sense.
|
||||
* So that notion isn't really intrinsically interesting, but it is
|
||||
* still useful when implementing algorithms.
|
||||
*
|
||||
* \sa rank()
|
||||
*/
|
||||
inline Index nonzeroPivots() const { return m_cpqr.nonzeroPivots(); }
|
||||
|
||||
/** \returns the absolute value of the biggest pivot, i.e. the biggest
|
||||
* diagonal coefficient of R.
|
||||
*/
|
||||
inline RealScalar maxPivot() const { return m_cpqr.maxPivot(); }
|
||||
|
||||
/** \brief Reports whether the complete orthogonal decomposition was
|
||||
* succesful.
|
||||
*
|
||||
* \note This function always returns \c Success. It is provided for
|
||||
* compatibility
|
||||
* with other factorization routines.
|
||||
* \returns \c Success
|
||||
*/
|
||||
ComputationInfo info() const {
|
||||
eigen_assert(m_cpqr.m_isInitialized && "Decomposition is not initialized.");
|
||||
return Success;
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template <typename RhsType, typename DstType>
|
||||
EIGEN_DEVICE_FUNC void _solve_impl(const RhsType& rhs, DstType& dst) const;
|
||||
#endif
|
||||
|
||||
protected:
|
||||
static void check_template_parameters() {
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
|
||||
ColPivHouseholderQR<MatrixType> m_cpqr;
|
||||
HCoeffsType m_zCoeffs;
|
||||
RowVectorType m_temp;
|
||||
};
|
||||
|
||||
template <typename MatrixType>
|
||||
typename MatrixType::RealScalar
|
||||
CompleteOrthogonalDecomposition<MatrixType>::absDeterminant() const {
|
||||
return m_cpqr.absDeterminant();
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
typename MatrixType::RealScalar
|
||||
CompleteOrthogonalDecomposition<MatrixType>::logAbsDeterminant() const {
|
||||
return m_cpqr.logAbsDeterminant();
|
||||
}
|
||||
|
||||
/** Performs the complete orthogonal decomposition of the given matrix \a
|
||||
* matrix. The result of the factorization is stored into \c *this, and a
|
||||
* reference to \c *this is returned.
|
||||
*
|
||||
* \sa class CompleteOrthogonalDecomposition,
|
||||
* CompleteOrthogonalDecomposition(const MatrixType&)
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
template <typename InputType>
|
||||
CompleteOrthogonalDecomposition<MatrixType>& CompleteOrthogonalDecomposition<
|
||||
MatrixType>::compute(const EigenBase<InputType>& matrix) {
|
||||
check_template_parameters();
|
||||
|
||||
// the column permutation is stored as int indices, so just to be sure:
|
||||
eigen_assert(matrix.cols() <= NumTraits<int>::highest());
|
||||
|
||||
// Compute the column pivoted QR factorization A P = Q R.
|
||||
m_cpqr.compute(matrix);
|
||||
|
||||
const Index rank = m_cpqr.rank();
|
||||
const Index cols = matrix.cols();
|
||||
if (rank < cols) {
|
||||
// We have reduced the (permuted) matrix to the form
|
||||
// [R11 R12]
|
||||
// [ 0 R22]
|
||||
// where R11 is r-by-r (r = rank) upper triangular, R12 is
|
||||
// r-by-(n-r), and R22 is empty or the norm of R22 is negligible.
|
||||
// We now compute the complete orthogonal decomposition by applying
|
||||
// Householder transformations from the right to the upper trapezoidal
|
||||
// matrix X = [R11 R12] to zero out R12 and obtain the factorization
|
||||
// [R11 R12] = [T11 0] * Z, where T11 is r-by-r upper triangular and
|
||||
// Z = Z(0) * Z(1) ... Z(r-1) is an n-by-n orthogonal matrix.
|
||||
// We store the data representing Z in R12 and m_zCoeffs.
|
||||
for (Index k = rank - 1; k >= 0; --k) {
|
||||
if (k != rank - 1) {
|
||||
// Given the API for Householder reflectors, it is more convenient if
|
||||
// we swap the leading parts of columns k and r-1 (zero-based) to form
|
||||
// the matrix X_k = [X(0:k, k), X(0:k, r:n)]
|
||||
m_cpqr.m_qr.col(k).head(k + 1).swap(
|
||||
m_cpqr.m_qr.col(rank - 1).head(k + 1));
|
||||
}
|
||||
// Construct Householder reflector Z(k) to zero out the last row of X_k,
|
||||
// i.e. choose Z(k) such that
|
||||
// [X(k, k), X(k, r:n)] * Z(k) = [beta, 0, .., 0].
|
||||
RealScalar beta;
|
||||
m_cpqr.m_qr.row(k)
|
||||
.tail(cols - rank + 1)
|
||||
.makeHouseholderInPlace(m_zCoeffs(k), beta);
|
||||
m_cpqr.m_qr(k, rank - 1) = beta;
|
||||
if (k > 0) {
|
||||
// Apply Z(k) to the first k rows of X_k
|
||||
m_cpqr.m_qr.topRightCorner(k, cols - rank + 1)
|
||||
.applyHouseholderOnTheRight(
|
||||
m_cpqr.m_qr.row(k).tail(cols - rank).transpose(), m_zCoeffs(k),
|
||||
&m_temp(0));
|
||||
}
|
||||
if (k != rank - 1) {
|
||||
// Swap X(0:k,k) back to its proper location.
|
||||
m_cpqr.m_qr.col(k).head(k + 1).swap(
|
||||
m_cpqr.m_qr.col(rank - 1).head(k + 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
template <typename Rhs>
|
||||
void CompleteOrthogonalDecomposition<MatrixType>::applyZAdjointOnTheLeftInPlace(
|
||||
Rhs& rhs) const {
|
||||
const Index cols = this->cols();
|
||||
const Index nrhs = rhs.cols();
|
||||
const Index rank = this->rank();
|
||||
Matrix<typename MatrixType::Scalar, Dynamic, 1> temp((std::max)(cols, nrhs));
|
||||
for (Index k = 0; k < rank; ++k) {
|
||||
if (k != rank - 1) {
|
||||
rhs.row(k).swap(rhs.row(rank - 1));
|
||||
}
|
||||
rhs.middleRows(rank - 1, cols - rank + 1)
|
||||
.applyHouseholderOnTheLeft(
|
||||
matrixQTZ().row(k).tail(cols - rank).adjoint(), zCoeffs()(k),
|
||||
&temp(0));
|
||||
if (k != rank - 1) {
|
||||
rhs.row(k).swap(rhs.row(rank - 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template <typename _MatrixType>
|
||||
template <typename RhsType, typename DstType>
|
||||
void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl(
|
||||
const RhsType& rhs, DstType& dst) const {
|
||||
eigen_assert(rhs().rows() == this->rows());
|
||||
|
||||
const Index rank = this->rank();
|
||||
if (rank == 0) {
|
||||
dst.setZero();
|
||||
return;
|
||||
}
|
||||
|
||||
// Compute c = Q^* * rhs
|
||||
// Note that the matrix Q = H_0^* H_1^*... so its inverse is
|
||||
// Q^* = (H_0 H_1 ...)^T
|
||||
typename RhsType::PlainObject c(rhs());
|
||||
c.applyOnTheLeft(
|
||||
householderSequence(matrixQTZ(), hCoeffs()).setLength(rank).transpose());
|
||||
|
||||
// Solve T z = c(1:rank, :)
|
||||
dst.topRows(rank) = matrixT()
|
||||
.topLeftCorner(rank, rank)
|
||||
.template triangularView<Upper>()
|
||||
.solve(c.topRows(rank));
|
||||
|
||||
const Index cols = this->cols();
|
||||
if (rank < cols) {
|
||||
// Compute y = Z^* * [ z ]
|
||||
// [ 0 ]
|
||||
dst.bottomRows(cols - rank).setZero();
|
||||
applyZAdjointOnTheLeftInPlace(dst);
|
||||
}
|
||||
|
||||
// Undo permutation to get x = P^{-1} * y.
|
||||
dst = colsPermutation() * dst;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** \returns the matrix Q as a sequence of householder transformations */
|
||||
template <typename MatrixType>
|
||||
typename CompleteOrthogonalDecomposition<MatrixType>::HouseholderSequenceType
|
||||
CompleteOrthogonalDecomposition<MatrixType>::householderQ() const {
|
||||
return m_cpqr.householderQ();
|
||||
}
|
||||
|
||||
#ifndef __CUDACC__
|
||||
/** \return the complete orthogonal decomposition of \c *this.
|
||||
*
|
||||
* \sa class CompleteOrthogonalDecomposition
|
||||
*/
|
||||
template <typename Derived>
|
||||
const CompleteOrthogonalDecomposition<typename MatrixBase<Derived>::PlainObject>
|
||||
MatrixBase<Derived>::completeOrthogonalDecomposition() const {
|
||||
return CompleteOrthogonalDecomposition<PlainObject>(eval());
|
||||
}
|
||||
#endif // __CUDACC__
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
|
@ -10,6 +10,83 @@
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/QR>
|
||||
#include <Eigen/SVD>
|
||||
|
||||
template <typename MatrixType>
|
||||
void cod() {
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
Index rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
|
||||
Index cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
|
||||
Index cols2 = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
|
||||
Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1);
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime,
|
||||
MatrixType::RowsAtCompileTime>
|
||||
MatrixQType;
|
||||
MatrixType matrix;
|
||||
createRandomPIMatrixOfRank(rank, rows, cols, matrix);
|
||||
CompleteOrthogonalDecomposition<MatrixType> cod(matrix);
|
||||
VERIFY(rank == cod.rank());
|
||||
VERIFY(cols - cod.rank() == cod.dimensionOfKernel());
|
||||
VERIFY(!cod.isInjective());
|
||||
VERIFY(!cod.isInvertible());
|
||||
VERIFY(!cod.isSurjective());
|
||||
|
||||
MatrixQType q = cod.householderQ();
|
||||
VERIFY_IS_UNITARY(q);
|
||||
|
||||
MatrixType z = cod.matrixZ();
|
||||
VERIFY_IS_UNITARY(z);
|
||||
|
||||
MatrixType t;
|
||||
t.setZero(rows, cols);
|
||||
t.topLeftCorner(rank, rank) =
|
||||
cod.matrixT().topLeftCorner(rank, rank).template triangularView<Upper>();
|
||||
|
||||
MatrixType c = q * t * z * cod.colsPermutation().inverse();
|
||||
VERIFY_IS_APPROX(matrix, c);
|
||||
|
||||
MatrixType exact_solution = MatrixType::Random(cols, cols2);
|
||||
MatrixType rhs = matrix * exact_solution;
|
||||
MatrixType cod_solution = cod.solve(rhs);
|
||||
VERIFY_IS_APPROX(rhs, matrix * cod_solution);
|
||||
|
||||
// Verify that we get the same minimum-norm solution as the SVD.
|
||||
JacobiSVD<MatrixType> svd(matrix, ComputeThinU | ComputeThinV);
|
||||
MatrixType svd_solution = svd.solve(rhs);
|
||||
VERIFY_IS_APPROX(cod_solution, svd_solution);
|
||||
}
|
||||
|
||||
template <typename MatrixType, int Cols2>
|
||||
void cod_fixedsize() {
|
||||
enum {
|
||||
Rows = MatrixType::RowsAtCompileTime,
|
||||
Cols = MatrixType::ColsAtCompileTime
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols)) - 1);
|
||||
Matrix<Scalar, Rows, Cols> matrix;
|
||||
createRandomPIMatrixOfRank(rank, Rows, Cols, matrix);
|
||||
CompleteOrthogonalDecomposition<Matrix<Scalar, Rows, Cols> > cod(matrix);
|
||||
VERIFY(rank == cod.rank());
|
||||
VERIFY(Cols - cod.rank() == cod.dimensionOfKernel());
|
||||
VERIFY(cod.isInjective() == (rank == Rows));
|
||||
VERIFY(cod.isSurjective() == (rank == Cols));
|
||||
VERIFY(cod.isInvertible() == (cod.isInjective() && cod.isSurjective()));
|
||||
|
||||
Matrix<Scalar, Cols, Cols2> exact_solution;
|
||||
exact_solution.setRandom(Cols, Cols2);
|
||||
Matrix<Scalar, Rows, Cols2> rhs = matrix * exact_solution;
|
||||
Matrix<Scalar, Cols, Cols2> cod_solution = cod.solve(rhs);
|
||||
VERIFY_IS_APPROX(rhs, matrix * cod_solution);
|
||||
|
||||
// Verify that we get the same minimum-norm solution as the SVD.
|
||||
JacobiSVD<MatrixType> svd(matrix, ComputeFullU | ComputeFullV);
|
||||
Matrix<Scalar, Cols, Cols2> svd_solution = svd.solve(rhs);
|
||||
VERIFY_IS_APPROX(cod_solution, svd_solution);
|
||||
}
|
||||
|
||||
template<typename MatrixType> void qr()
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user