From d904c8ac8f5963b0c6f2528f4ee1823350277713 Mon Sep 17 00:00:00 2001 From: Rasmus Munk Larsen Date: Sat, 6 Feb 2016 16:32:00 -0800 Subject: [PATCH] Implement complete orthogonal decomposition in Eigen. --- Eigen/QR | 1 + Eigen/src/Core/MatrixBase.h | 25 +- Eigen/src/Core/util/ForwardDeclarations.h | 3 +- Eigen/src/QR/ColPivHouseholderQR.h | 2 + .../src/QR/CompleteOrthogonalDecomposition.h | 538 ++++++++++++++++++ test/qr_colpivoting.cpp | 77 +++ 6 files changed, 633 insertions(+), 13 deletions(-) create mode 100644 Eigen/src/QR/CompleteOrthogonalDecomposition.h diff --git a/Eigen/QR b/Eigen/QR index f74f365f1..25c781cc1 100644 --- a/Eigen/QR +++ b/Eigen/QR @@ -34,6 +34,7 @@ #include "src/QR/HouseholderQR.h" #include "src/QR/FullPivHouseholderQR.h" #include "src/QR/ColPivHouseholderQR.h" +#include "src/QR/CompleteOrthogonalDecomposition.h" #ifdef EIGEN_USE_LAPACKE #include "src/QR/HouseholderQR_MKL.h" #include "src/QR/ColPivHouseholderQR_MKL.h" diff --git a/Eigen/src/Core/MatrixBase.h b/Eigen/src/Core/MatrixBase.h index 3770ab257..1e66b4e1b 100644 --- a/Eigen/src/Core/MatrixBase.h +++ b/Eigen/src/Core/MatrixBase.h @@ -66,7 +66,7 @@ template class MatrixBase using Base::MaxSizeAtCompileTime; using Base::IsVectorAtCompileTime; using Base::Flags; - + using Base::derived; using Base::const_cast_derived; using Base::rows; @@ -175,7 +175,7 @@ template class MatrixBase #endif template - EIGEN_DEVICE_FUNC + EIGEN_DEVICE_FUNC const Product lazyProduct(const MatrixBase &other) const; @@ -214,7 +214,7 @@ template class MatrixBase typedef Diagonal DiagonalReturnType; EIGEN_DEVICE_FUNC DiagonalReturnType diagonal(); - + typedef typename internal::add_const >::type ConstDiagonalReturnType; EIGEN_DEVICE_FUNC ConstDiagonalReturnType diagonal() const; @@ -222,14 +222,14 @@ template class MatrixBase template struct DiagonalIndexReturnType { typedef Diagonal Type; }; template struct ConstDiagonalIndexReturnType { typedef const Diagonal Type; }; - template + template EIGEN_DEVICE_FUNC typename DiagonalIndexReturnType::Type diagonal(); template EIGEN_DEVICE_FUNC typename ConstDiagonalIndexReturnType::Type diagonal() const; - + typedef Diagonal DiagonalDynamicIndexReturnType; typedef typename internal::add_const >::type ConstDiagonalDynamicIndexReturnType; @@ -251,7 +251,7 @@ template class MatrixBase template struct SelfAdjointViewReturnType { typedef SelfAdjointView Type; }; template struct ConstSelfAdjointViewReturnType { typedef const SelfAdjointView Type; }; - template + template EIGEN_DEVICE_FUNC typename SelfAdjointViewReturnType::Type selfadjointView(); template @@ -340,7 +340,7 @@ template class MatrixBase EIGEN_DEVICE_FUNC inline const Inverse inverse() const; - + template inline void computeInverseAndDetWithCheck( ResultType& inverse, @@ -366,6 +366,7 @@ template class MatrixBase inline const HouseholderQR householderQr() const; inline const ColPivHouseholderQR colPivHouseholderQr() const; inline const FullPivHouseholderQR fullPivHouseholderQr() const; + inline const CompleteOrthogonalDecomposition completeOrthogonalDecomposition() const; /////////// Eigenvalues module /////////// @@ -394,23 +395,23 @@ template class MatrixBase inline PlainObject #endif cross(const MatrixBase& other) const; - + template EIGEN_DEVICE_FUNC inline PlainObject cross3(const MatrixBase& other) const; - + EIGEN_DEVICE_FUNC inline PlainObject unitOrthogonal(void) const; - + inline Matrix eulerAngles(Index a0, Index a1, Index a2) const; - + inline ScalarMultipleReturnType operator*(const UniformScaling& s) const; // put this as separate enum value to work around possible GCC 4.3 bug (?) enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1&&RowsAtCompileTime==1 ? ((internal::traits::Flags&RowMajorBit)==RowMajorBit ? Horizontal : Vertical) : ColsAtCompileTime==1 ? Vertical : Horizontal }; typedef Homogeneous HomogeneousReturnType; inline HomogeneousReturnType homogeneous() const; - + enum { SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 }; diff --git a/Eigen/src/Core/util/ForwardDeclarations.h b/Eigen/src/Core/util/ForwardDeclarations.h index 31c7088e7..f09632375 100644 --- a/Eigen/src/Core/util/ForwardDeclarations.h +++ b/Eigen/src/Core/util/ForwardDeclarations.h @@ -95,7 +95,7 @@ template class Solve; template class Inverse; template class Product; - + template class DiagonalBase; template class DiagonalWrapper; template class DiagonalMatrix; @@ -248,6 +248,7 @@ template struct inverse_impl; template class HouseholderQR; template class ColPivHouseholderQR; template class FullPivHouseholderQR; +template class CompleteOrthogonalDecomposition; template class JacobiSVD; template class BDCSVD; template class LLT; diff --git a/Eigen/src/QR/ColPivHouseholderQR.h b/Eigen/src/QR/ColPivHouseholderQR.h index efeb1f438..7c559f952 100644 --- a/Eigen/src/QR/ColPivHouseholderQR.h +++ b/Eigen/src/QR/ColPivHouseholderQR.h @@ -404,6 +404,8 @@ template class ColPivHouseholderQR protected: + friend class CompleteOrthogonalDecomposition; + static void check_template_parameters() { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); diff --git a/Eigen/src/QR/CompleteOrthogonalDecomposition.h b/Eigen/src/QR/CompleteOrthogonalDecomposition.h new file mode 100644 index 000000000..b81bb7433 --- /dev/null +++ b/Eigen/src/QR/CompleteOrthogonalDecomposition.h @@ -0,0 +1,538 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 Rasmus Munk Larsen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H +#define EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H + +namespace Eigen { + +namespace internal { +template +struct traits > + : traits<_MatrixType> { + enum { Flags = 0 }; +}; + +} // end namespace internal + +/** \ingroup QR_Module + * + * \class CompleteOrthogonalDecomposition + * + * \brief Complete orthogonal decomposition (COD) of a matrix. + * + * \param MatrixType the type of the matrix of which we are computing the COD. + * + * This class performs a rank-revealing complete ortogonal decomposition of a + * matrix \b A into matrices \b P, \b Q, \b T, and \b Z such that + * \f[ + * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \begin{matrix} \mathbf{T} & + * \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{matrix} \, \mathbf{Z} + * \f] + * by using Householder transformations. Here, \b P is a permutation matrix, + * \b Q and \b Z are unitary matrices and \b T an upper triangular matrix of + * size rank-by-rank. \b A may be rank deficient. + * + * \sa MatrixBase::completeOrthogonalDecomposition() + */ +template +class CompleteOrthogonalDecomposition { + public: + typedef _MatrixType MatrixType; + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef Matrix + MatrixQType; + typedef typename internal::plain_diag_type::type HCoeffsType; + typedef PermutationMatrix + PermutationType; + typedef typename internal::plain_row_type::type + IntRowVectorType; + typedef typename internal::plain_row_type::type RowVectorType; + typedef typename internal::plain_row_type::type + RealRowVectorType; + typedef HouseholderSequence< + MatrixType, typename internal::remove_all< + typename HCoeffsType::ConjugateReturnType>::type> + HouseholderSequenceType; + + private: + typedef typename PermutationType::Index PermIndexType; + + public: + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via + * \c CompleteOrthogonalDecomposition::compute(const* MatrixType&). + */ + CompleteOrthogonalDecomposition() : m_cpqr(), m_zCoeffs(), m_temp() {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa CompleteOrthogonalDecomposition() + */ + CompleteOrthogonalDecomposition(Index rows, Index cols) + : m_cpqr(rows, cols), m_zCoeffs((std::min)(rows, cols)), m_temp(cols) {} + + /** \brief Constructs a complete orthogonal decomposition from a given + * matrix. + * + * This constructor computes the complete orthogonal decomposition of the + * matrix \a matrix by calling the method compute(). The default + * threshold for rank determination will be used. It is a short cut for: + * + * \code + * CompleteOrthogonalDecomposition cod(matrix.rows(), + * matrix.cols()); + * cod.setThreshold(Default); + * cod.compute(matrix); + * \endcode + * + * \sa compute() + */ + template + explicit CompleteOrthogonalDecomposition(const EigenBase& matrix) + : m_cpqr(matrix.rows(), matrix.cols()), + m_zCoeffs((std::min)(matrix.rows(), matrix.cols())), + m_temp(matrix.cols()) { + compute(matrix.derived()); + } + + /** This method computes the minimum-norm solution X to a least squares + * problem \f[\mathrm{minimize} ||A X - B|| \f], where \b A is the matrix of + * which \c *this is the complete orthogonal decomposition. + * + * \param B the right-hand sides of the problem to solve. + * + * \returns a solution. + * + */ + template + inline const Solve solve( + const MatrixBase& b) const { + eigen_assert(m_cpqr.m_isInitialized && + "CompleteOrthogonalDecomposition is not initialized."); + return Solve(*this, b.derived()); + } + + HouseholderSequenceType householderQ(void) const; + HouseholderSequenceType matrixQ(void) const { return m_cpqr.householderQ(); } + + /** Overwrites \b rhs with \f$ \mathbf{Z}^* * \mathbf{rhs} \f$. + */ + template + void applyZAdjointOnTheLeftInPlace(Rhs& rhs) const; + + /** \returns the matrix \b Z. + */ + MatrixType matrixZ() const { + MatrixType Z = MatrixType::Identity(m_cpqr.cols(), m_cpqr.cols()); + applyZAdjointOnTheLeftInPlace(Z); + return Z.adjoint(); + } + + /** \returns a reference to the matrix where the complete orthogonal + * decomposition is stored + */ + const MatrixType& matrixQTZ() const { return m_cpqr.matrixQR(); } + + /** \returns a reference to the matrix where the complete orthogonal + * decomposition is stored. + * \warning The strict lower part and \code cols() - rank() \endcode right + * columns of this matrix contains internal values. + * Only the upper triangular part should be referenced. To get it, use + * \code matrixT().template triangularView() \endcode + * For rank-deficient matrices, use + * \code + * matrixR().topLeftCorner(rank(), rank()).template triangularView() + * \endcode + */ + const MatrixType& matrixT() const { return m_cpqr.matrixQR(); } + + template + CompleteOrthogonalDecomposition& compute(const EigenBase& matrix); + + /** \returns a const reference to the column permutation matrix */ + const PermutationType& colsPermutation() const { + return m_cpqr.colsPermutation(); + } + + /** \returns the absolute value of the determinant of the matrix of which + * *this is the complete orthogonal decomposition. It has only linear + * complexity (that is, O(n) where n is the dimension of the square matrix) + * as the complete orthogonal decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * One way to work around that is to use logAbsDeterminant() instead. + * + * \sa logAbsDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::RealScalar absDeterminant() const; + + /** \returns the natural log of the absolute value of the determinant of the + * matrix of which *this is the complete orthogonal decomposition. It has + * only linear complexity (that is, O(n) where n is the dimension of the + * square matrix) as the complete orthogonal decomposition has already been + * computed. + * + * \note This is only for square matrices. + * + * \note This method is useful to work around the risk of overflow/underflow + * that's inherent to determinant computation. + * + * \sa absDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::RealScalar logAbsDeterminant() const; + + /** \returns the rank of the matrix of which *this is the complete orthogonal + * decomposition. + * + * \note This method has to determine which pivots should be considered + * nonzero. For that, it uses the threshold value that you can control by + * calling setThreshold(const RealScalar&). + */ + inline Index rank() const { return m_cpqr.rank(); } + + /** \returns the dimension of the kernel of the matrix of which *this is the + * complete orthogonal decomposition. + * + * \note This method has to determine which pivots should be considered + * nonzero. For that, it uses the threshold value that you can control by + * calling setThreshold(const RealScalar&). + */ + inline Index dimensionOfKernel() const { return m_cpqr.dimensionOfKernel(); } + + /** \returns true if the matrix of which *this is the decomposition represents + * an injective linear map, i.e. has trivial kernel; false otherwise. + * + * \note This method has to determine which pivots should be considered + * nonzero. For that, it uses the threshold value that you can control by + * calling setThreshold(const RealScalar&). + */ + inline bool isInjective() const { return m_cpqr.isInjective(); } + + /** \returns true if the matrix of which *this is the decomposition represents + * a surjective linear map; false otherwise. + * + * \note This method has to determine which pivots should be considered + * nonzero. For that, it uses the threshold value that you can control by + * calling setThreshold(const RealScalar&). + */ + inline bool isSurjective() const { return m_cpqr.isSurjective(); } + + /** \returns true if the matrix of which *this is the complete orthogonal + * decomposition is invertible. + * + * \note This method has to determine which pivots should be considered + * nonzero. For that, it uses the threshold value that you can control by + * calling setThreshold(const RealScalar&). + */ + inline bool isInvertible() const { return m_cpqr.isInvertible(); } + + /** \returns the inverse of the matrix of which *this is the complete + * orthogonal decomposition. + * + * \note If this matrix is not invertible, the returned matrix has undefined + * coefficients. Use isInvertible() to first determine whether this matrix is + * invertible. + */ + + // TODO(rmlarsen): Add method for pseudo-inverse. + // inline const + // internal::solve_retval + // inverse() const + // { + // eigen_assert(m_isInitialized && "CompleteOrthogonalDecomposition is not + // initialized."); + // return internal::solve_retval + // (*this, MatrixType::Identity(m_cpqr.rows(), m_cpqr.cols())); + // } + + inline Index rows() const { return m_cpqr.rows(); } + inline Index cols() const { return m_cpqr.cols(); } + + /** \returns a const reference to the vector of Householder coefficients used + * to represent the factor \c Q. + * + * For advanced uses only. + */ + inline const HCoeffsType& hCoeffs() const { return m_cpqr.hCoeffs(); } + + /** \returns a const reference to the vector of Householder coefficients + * used to represent the factor \c Z. + * + * For advanced uses only. + */ + const HCoeffsType& zCoeffs() const { return m_zCoeffs; } + + /** Allows to prescribe a threshold to be used by certain methods, such as + * rank(), who need to determine when pivots are to be considered nonzero. + * Most be called before calling compute(). + * + * When it needs to get the threshold value, Eigen calls threshold(). By + * default, this uses a formula to automatically determine a reasonable + * threshold. Once you have called the present method + * setThreshold(const RealScalar&), your value is used instead. + * + * \param threshold The new value to use as the threshold. + * + * A pivot will be considered nonzero if its absolute value is strictly + * greater than + * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ + * where maxpivot is the biggest pivot. + * + * If you want to come back to the default behavior, call + * setThreshold(Default_t) + */ + CompleteOrthogonalDecomposition& setThreshold(const RealScalar& threshold) { + m_cpqr.setThreshold(threshold); + return *this; + } + + /** Allows to come back to the default behavior, letting Eigen use its default + * formula for determining the threshold. + * + * You should pass the special object Eigen::Default as parameter here. + * \code qr.setThreshold(Eigen::Default); \endcode + * + * See the documentation of setThreshold(const RealScalar&). + */ + CompleteOrthogonalDecomposition& setThreshold(Default_t) { + m_cpqr.setThreshold(Default); + return *this; + } + + /** Returns the threshold that will be used by certain methods such as rank(). + * + * See the documentation of setThreshold(const RealScalar&). + */ + RealScalar threshold() const { return m_cpqr.threshold(); } + + /** \returns the number of nonzero pivots in the complete orthogonal + * decomposition. + * Here nonzero is meant in the exact sense, not in a fuzzy sense. + * So that notion isn't really intrinsically interesting, but it is + * still useful when implementing algorithms. + * + * \sa rank() + */ + inline Index nonzeroPivots() const { return m_cpqr.nonzeroPivots(); } + + /** \returns the absolute value of the biggest pivot, i.e. the biggest + * diagonal coefficient of R. + */ + inline RealScalar maxPivot() const { return m_cpqr.maxPivot(); } + + /** \brief Reports whether the complete orthogonal decomposition was + * succesful. + * + * \note This function always returns \c Success. It is provided for + * compatibility + * with other factorization routines. + * \returns \c Success + */ + ComputationInfo info() const { + eigen_assert(m_cpqr.m_isInitialized && "Decomposition is not initialized."); + return Success; + } + +#ifndef EIGEN_PARSED_BY_DOXYGEN + template + EIGEN_DEVICE_FUNC void _solve_impl(const RhsType& rhs, DstType& dst) const; +#endif + + protected: + static void check_template_parameters() { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + } + + ColPivHouseholderQR m_cpqr; + HCoeffsType m_zCoeffs; + RowVectorType m_temp; +}; + +template +typename MatrixType::RealScalar +CompleteOrthogonalDecomposition::absDeterminant() const { + return m_cpqr.absDeterminant(); +} + +template +typename MatrixType::RealScalar +CompleteOrthogonalDecomposition::logAbsDeterminant() const { + return m_cpqr.logAbsDeterminant(); +} + +/** Performs the complete orthogonal decomposition of the given matrix \a + * matrix. The result of the factorization is stored into \c *this, and a + * reference to \c *this is returned. + * + * \sa class CompleteOrthogonalDecomposition, + * CompleteOrthogonalDecomposition(const MatrixType&) + */ +template +template +CompleteOrthogonalDecomposition& CompleteOrthogonalDecomposition< + MatrixType>::compute(const EigenBase& matrix) { + check_template_parameters(); + + // the column permutation is stored as int indices, so just to be sure: + eigen_assert(matrix.cols() <= NumTraits::highest()); + + // Compute the column pivoted QR factorization A P = Q R. + m_cpqr.compute(matrix); + + const Index rank = m_cpqr.rank(); + const Index cols = matrix.cols(); + if (rank < cols) { + // We have reduced the (permuted) matrix to the form + // [R11 R12] + // [ 0 R22] + // where R11 is r-by-r (r = rank) upper triangular, R12 is + // r-by-(n-r), and R22 is empty or the norm of R22 is negligible. + // We now compute the complete orthogonal decomposition by applying + // Householder transformations from the right to the upper trapezoidal + // matrix X = [R11 R12] to zero out R12 and obtain the factorization + // [R11 R12] = [T11 0] * Z, where T11 is r-by-r upper triangular and + // Z = Z(0) * Z(1) ... Z(r-1) is an n-by-n orthogonal matrix. + // We store the data representing Z in R12 and m_zCoeffs. + for (Index k = rank - 1; k >= 0; --k) { + if (k != rank - 1) { + // Given the API for Householder reflectors, it is more convenient if + // we swap the leading parts of columns k and r-1 (zero-based) to form + // the matrix X_k = [X(0:k, k), X(0:k, r:n)] + m_cpqr.m_qr.col(k).head(k + 1).swap( + m_cpqr.m_qr.col(rank - 1).head(k + 1)); + } + // Construct Householder reflector Z(k) to zero out the last row of X_k, + // i.e. choose Z(k) such that + // [X(k, k), X(k, r:n)] * Z(k) = [beta, 0, .., 0]. + RealScalar beta; + m_cpqr.m_qr.row(k) + .tail(cols - rank + 1) + .makeHouseholderInPlace(m_zCoeffs(k), beta); + m_cpqr.m_qr(k, rank - 1) = beta; + if (k > 0) { + // Apply Z(k) to the first k rows of X_k + m_cpqr.m_qr.topRightCorner(k, cols - rank + 1) + .applyHouseholderOnTheRight( + m_cpqr.m_qr.row(k).tail(cols - rank).transpose(), m_zCoeffs(k), + &m_temp(0)); + } + if (k != rank - 1) { + // Swap X(0:k,k) back to its proper location. + m_cpqr.m_qr.col(k).head(k + 1).swap( + m_cpqr.m_qr.col(rank - 1).head(k + 1)); + } + } + } + return *this; +} + +template +template +void CompleteOrthogonalDecomposition::applyZAdjointOnTheLeftInPlace( + Rhs& rhs) const { + const Index cols = this->cols(); + const Index nrhs = rhs.cols(); + const Index rank = this->rank(); + Matrix temp((std::max)(cols, nrhs)); + for (Index k = 0; k < rank; ++k) { + if (k != rank - 1) { + rhs.row(k).swap(rhs.row(rank - 1)); + } + rhs.middleRows(rank - 1, cols - rank + 1) + .applyHouseholderOnTheLeft( + matrixQTZ().row(k).tail(cols - rank).adjoint(), zCoeffs()(k), + &temp(0)); + if (k != rank - 1) { + rhs.row(k).swap(rhs.row(rank - 1)); + } + } +} + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl( + const RhsType& rhs, DstType& dst) const { + eigen_assert(rhs().rows() == this->rows()); + + const Index rank = this->rank(); + if (rank == 0) { + dst.setZero(); + return; + } + + // Compute c = Q^* * rhs + // Note that the matrix Q = H_0^* H_1^*... so its inverse is + // Q^* = (H_0 H_1 ...)^T + typename RhsType::PlainObject c(rhs()); + c.applyOnTheLeft( + householderSequence(matrixQTZ(), hCoeffs()).setLength(rank).transpose()); + + // Solve T z = c(1:rank, :) + dst.topRows(rank) = matrixT() + .topLeftCorner(rank, rank) + .template triangularView() + .solve(c.topRows(rank)); + + const Index cols = this->cols(); + if (rank < cols) { + // Compute y = Z^* * [ z ] + // [ 0 ] + dst.bottomRows(cols - rank).setZero(); + applyZAdjointOnTheLeftInPlace(dst); + } + + // Undo permutation to get x = P^{-1} * y. + dst = colsPermutation() * dst; +} +#endif + +/** \returns the matrix Q as a sequence of householder transformations */ +template +typename CompleteOrthogonalDecomposition::HouseholderSequenceType +CompleteOrthogonalDecomposition::householderQ() const { + return m_cpqr.householderQ(); +} + +#ifndef __CUDACC__ +/** \return the complete orthogonal decomposition of \c *this. + * + * \sa class CompleteOrthogonalDecomposition + */ +template +const CompleteOrthogonalDecomposition::PlainObject> +MatrixBase::completeOrthogonalDecomposition() const { + return CompleteOrthogonalDecomposition(eval()); +} +#endif // __CUDACC__ + +} // end namespace Eigen + +#endif // EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H diff --git a/test/qr_colpivoting.cpp b/test/qr_colpivoting.cpp index 9c989823e..648250af6 100644 --- a/test/qr_colpivoting.cpp +++ b/test/qr_colpivoting.cpp @@ -10,6 +10,83 @@ #include "main.h" #include +#include + +template +void cod() { + typedef typename MatrixType::Index Index; + + Index rows = internal::random(2, EIGEN_TEST_MAX_SIZE); + Index cols = internal::random(2, EIGEN_TEST_MAX_SIZE); + Index cols2 = internal::random(2, EIGEN_TEST_MAX_SIZE); + Index rank = internal::random(1, (std::min)(rows, cols) - 1); + + typedef typename MatrixType::Scalar Scalar; + typedef Matrix + MatrixQType; + MatrixType matrix; + createRandomPIMatrixOfRank(rank, rows, cols, matrix); + CompleteOrthogonalDecomposition cod(matrix); + VERIFY(rank == cod.rank()); + VERIFY(cols - cod.rank() == cod.dimensionOfKernel()); + VERIFY(!cod.isInjective()); + VERIFY(!cod.isInvertible()); + VERIFY(!cod.isSurjective()); + + MatrixQType q = cod.householderQ(); + VERIFY_IS_UNITARY(q); + + MatrixType z = cod.matrixZ(); + VERIFY_IS_UNITARY(z); + + MatrixType t; + t.setZero(rows, cols); + t.topLeftCorner(rank, rank) = + cod.matrixT().topLeftCorner(rank, rank).template triangularView(); + + MatrixType c = q * t * z * cod.colsPermutation().inverse(); + VERIFY_IS_APPROX(matrix, c); + + MatrixType exact_solution = MatrixType::Random(cols, cols2); + MatrixType rhs = matrix * exact_solution; + MatrixType cod_solution = cod.solve(rhs); + VERIFY_IS_APPROX(rhs, matrix * cod_solution); + + // Verify that we get the same minimum-norm solution as the SVD. + JacobiSVD svd(matrix, ComputeThinU | ComputeThinV); + MatrixType svd_solution = svd.solve(rhs); + VERIFY_IS_APPROX(cod_solution, svd_solution); +} + +template +void cod_fixedsize() { + enum { + Rows = MatrixType::RowsAtCompileTime, + Cols = MatrixType::ColsAtCompileTime + }; + typedef typename MatrixType::Scalar Scalar; + int rank = internal::random(1, (std::min)(int(Rows), int(Cols)) - 1); + Matrix matrix; + createRandomPIMatrixOfRank(rank, Rows, Cols, matrix); + CompleteOrthogonalDecomposition > cod(matrix); + VERIFY(rank == cod.rank()); + VERIFY(Cols - cod.rank() == cod.dimensionOfKernel()); + VERIFY(cod.isInjective() == (rank == Rows)); + VERIFY(cod.isSurjective() == (rank == Cols)); + VERIFY(cod.isInvertible() == (cod.isInjective() && cod.isSurjective())); + + Matrix exact_solution; + exact_solution.setRandom(Cols, Cols2); + Matrix rhs = matrix * exact_solution; + Matrix cod_solution = cod.solve(rhs); + VERIFY_IS_APPROX(rhs, matrix * cod_solution); + + // Verify that we get the same minimum-norm solution as the SVD. + JacobiSVD svd(matrix, ComputeFullU | ComputeFullV); + Matrix svd_solution = svd.solve(rhs); + VERIFY_IS_APPROX(cod_solution, svd_solution); +} template void qr() {