mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-07 18:27:40 +08:00
bug #1380: for Map<> as input of matrix exponential
This commit is contained in:
parent
6572825703
commit
d8b1f6cebd
@ -61,10 +61,11 @@ struct MatrixExponentialScalingOp
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
void matrix_exp_pade3(const MatrixType &A, MatrixType &U, MatrixType &V)
|
||||
template <typename MatA, typename MatU, typename MatV>
|
||||
void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V)
|
||||
{
|
||||
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
|
||||
typedef typename MatA::PlainObject MatrixType;
|
||||
typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar;
|
||||
const RealScalar b[] = {120.L, 60.L, 12.L, 1.L};
|
||||
const MatrixType A2 = A * A;
|
||||
const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
|
||||
@ -77,9 +78,10 @@ void matrix_exp_pade3(const MatrixType &A, MatrixType &U, MatrixType &V)
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
void matrix_exp_pade5(const MatrixType &A, MatrixType &U, MatrixType &V)
|
||||
template <typename MatA, typename MatU, typename MatV>
|
||||
void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V)
|
||||
{
|
||||
typedef typename MatA::PlainObject MatrixType;
|
||||
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
|
||||
const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L};
|
||||
const MatrixType A2 = A * A;
|
||||
@ -94,9 +96,10 @@ void matrix_exp_pade5(const MatrixType &A, MatrixType &U, MatrixType &V)
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
void matrix_exp_pade7(const MatrixType &A, MatrixType &U, MatrixType &V)
|
||||
template <typename MatA, typename MatU, typename MatV>
|
||||
void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V)
|
||||
{
|
||||
typedef typename MatA::PlainObject MatrixType;
|
||||
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
|
||||
const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L};
|
||||
const MatrixType A2 = A * A;
|
||||
@ -114,9 +117,10 @@ void matrix_exp_pade7(const MatrixType &A, MatrixType &U, MatrixType &V)
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
void matrix_exp_pade9(const MatrixType &A, MatrixType &U, MatrixType &V)
|
||||
template <typename MatA, typename MatU, typename MatV>
|
||||
void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V)
|
||||
{
|
||||
typedef typename MatA::PlainObject MatrixType;
|
||||
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
|
||||
const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L,
|
||||
2162160.L, 110880.L, 3960.L, 90.L, 1.L};
|
||||
@ -135,9 +139,10 @@ void matrix_exp_pade9(const MatrixType &A, MatrixType &U, MatrixType &V)
|
||||
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
|
||||
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
void matrix_exp_pade13(const MatrixType &A, MatrixType &U, MatrixType &V)
|
||||
template <typename MatA, typename MatU, typename MatV>
|
||||
void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V)
|
||||
{
|
||||
typedef typename MatA::PlainObject MatrixType;
|
||||
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
|
||||
const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L,
|
||||
1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L,
|
||||
@ -162,9 +167,10 @@ void matrix_exp_pade13(const MatrixType &A, MatrixType &U, MatrixType &V)
|
||||
* This function activates only if your long double is double-double or quadruple.
|
||||
*/
|
||||
#if LDBL_MANT_DIG > 64
|
||||
template <typename MatrixType>
|
||||
void matrix_exp_pade17(const MatrixType &A, MatrixType &U, MatrixType &V)
|
||||
template <typename MatA, typename MatU, typename MatV>
|
||||
void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V)
|
||||
{
|
||||
typedef typename MatA::PlainObject MatrixType;
|
||||
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
|
||||
const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
|
||||
100610229646136770560000.L, 15720348382208870400000.L,
|
||||
@ -342,9 +348,10 @@ struct matrix_exp_computeUV<MatrixType, long double>
|
||||
* \param arg argument of matrix exponential (should be plain object)
|
||||
* \param result variable in which result will be stored
|
||||
*/
|
||||
template <typename MatrixType, typename ResultType>
|
||||
void matrix_exp_compute(const MatrixType& arg, ResultType &result)
|
||||
template <typename ArgType, typename ResultType>
|
||||
void matrix_exp_compute(const ArgType& arg, ResultType &result)
|
||||
{
|
||||
typedef typename ArgType::PlainObject MatrixType;
|
||||
#if LDBL_MANT_DIG > 112 // rarely happens
|
||||
typedef typename traits<MatrixType>::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
@ -354,11 +361,11 @@ void matrix_exp_compute(const MatrixType& arg, ResultType &result)
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
typename MatrixType::PlainObject U, V;
|
||||
MatrixType U, V;
|
||||
int squarings;
|
||||
matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V)
|
||||
typename MatrixType::PlainObject numer = U + V;
|
||||
typename MatrixType::PlainObject denom = -U + V;
|
||||
MatrixType numer = U + V;
|
||||
MatrixType denom = -U + V;
|
||||
result = denom.partialPivLu().solve(numer);
|
||||
for (int i=0; i<squarings; i++)
|
||||
result *= result; // undo scaling by repeated squaring
|
||||
|
Loading…
Reference in New Issue
Block a user