mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
add a novel, experimental sparse product
This commit is contained in:
parent
1837b65b28
commit
d8534be728
@ -264,10 +264,18 @@ class SparseInnerVectorSet<SparseMatrix<_Scalar, _Options>, Size>
|
||||
|
||||
inline const Scalar* _valuePtr() const
|
||||
{ return m_matrix._valuePtr() + m_matrix._outerIndexPtr()[m_outerStart]; }
|
||||
inline Scalar* _valuePtr()
|
||||
{ return m_matrix.const_cast_derived()._valuePtr() + m_matrix._outerIndexPtr()[m_outerStart]; }
|
||||
|
||||
inline const int* _innerIndexPtr() const
|
||||
{ return m_matrix._innerIndexPtr() + m_matrix._outerIndexPtr()[m_outerStart]; }
|
||||
inline int* _innerIndexPtr()
|
||||
{ return m_matrix.const_cast_derived()._innerIndexPtr() + m_matrix._outerIndexPtr()[m_outerStart]; }
|
||||
|
||||
inline const int* _outerIndexPtr() const
|
||||
{ return m_matrix._outerIndexPtr() + m_outerStart; }
|
||||
inline int* _outerIndexPtr()
|
||||
{ return m_matrix.const_cast_derived()._outerIndexPtr() + m_outerStart; }
|
||||
|
||||
int nonZeros() const
|
||||
{
|
||||
|
@ -201,6 +201,14 @@ class SparseMatrix
|
||||
return m_data.value(id);
|
||||
}
|
||||
|
||||
inline Scalar& insertBackNoCheck(int outer, int inner)
|
||||
{
|
||||
int id = m_outerIndex[outer+1];
|
||||
++m_outerIndex[outer+1];
|
||||
m_data.append(0, inner);
|
||||
return m_data.value(id);
|
||||
}
|
||||
|
||||
inline void startVec(int outer)
|
||||
{
|
||||
ei_assert(m_outerIndex[outer]==int(m_data.size()) && "you must call startVec on each inner vec");
|
||||
@ -443,7 +451,7 @@ class SparseMatrix
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other)
|
||||
EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other)
|
||||
{
|
||||
const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
|
||||
if (needToTranspose)
|
||||
@ -479,13 +487,14 @@ class SparseMatrix
|
||||
m_data.resize(count);
|
||||
// pass 2
|
||||
for (int j=0; j<otherCopy.outerSize(); ++j)
|
||||
{
|
||||
for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
|
||||
{
|
||||
int pos = positions[it.index()]++;
|
||||
m_data.index(pos) = j;
|
||||
m_data.value(pos) = it.value();
|
||||
}
|
||||
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
else
|
||||
|
@ -251,6 +251,9 @@ template<typename Derived> class SparseMatrixBase : public AnyMatrixBase<Derived
|
||||
template<typename Lhs, typename Rhs>
|
||||
inline Derived& operator=(const SparseProduct<Lhs,Rhs>& product);
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
inline void _experimentalNewProduct(const Lhs& lhs, const Rhs& rhs);
|
||||
|
||||
friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m)
|
||||
{
|
||||
if (Flags&RowMajorBit)
|
||||
|
@ -32,8 +32,8 @@ struct SparseProductReturnType
|
||||
enum {
|
||||
LhsRowMajor = ei_traits<Lhs>::Flags & RowMajorBit,
|
||||
RhsRowMajor = ei_traits<Rhs>::Flags & RowMajorBit,
|
||||
TransposeRhs = (!LhsRowMajor) && RhsRowMajor,
|
||||
TransposeLhs = LhsRowMajor && (!RhsRowMajor)
|
||||
TransposeRhs = /*false,*/ (!LhsRowMajor) && RhsRowMajor,
|
||||
TransposeLhs = /*false*/ LhsRowMajor && (!RhsRowMajor)
|
||||
};
|
||||
|
||||
// FIXME if we transpose let's evaluate to a LinkedVectorMatrix since it is the
|
||||
@ -136,6 +136,84 @@ class SparseProduct : ei_no_assignment_operator,
|
||||
RhsNested m_rhs;
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
static void ei_sparse_product_impl2(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
||||
|
||||
// make sure to call innerSize/outerSize since we fake the storage order.
|
||||
int rows = lhs.innerSize();
|
||||
int cols = rhs.outerSize();
|
||||
ei_assert(lhs.outerSize() == rhs.innerSize());
|
||||
|
||||
std::vector<bool> mask(rows,false);
|
||||
|
||||
// estimate the number of non zero entries
|
||||
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
|
||||
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
|
||||
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
|
||||
|
||||
float ratio;
|
||||
|
||||
res.resize(rows, cols);
|
||||
res.reserve(int(ratioRes*rows*cols));
|
||||
// we compute each column of the result, one after the other
|
||||
for (int j=0; j<cols; ++j)
|
||||
{
|
||||
|
||||
res.startVec(j);
|
||||
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
||||
{
|
||||
Scalar y = rhsIt.value();
|
||||
int k = rhsIt.index();
|
||||
for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt)
|
||||
{
|
||||
int i = lhsIt.index();
|
||||
Scalar x = lhsIt.value();
|
||||
if(!mask[i])
|
||||
{
|
||||
mask[i] = true;
|
||||
values[i] = x * y;
|
||||
res.insertBackNoCheck(j,i);
|
||||
}
|
||||
else
|
||||
res._valuePtr()[mask[i]] += x* y;
|
||||
}
|
||||
}
|
||||
// if the result is sparse enough => use a quick sort
|
||||
// otherwise => loop through the entire vector
|
||||
SparseInnerVectorSet<ResultType,1> vec(res,j);
|
||||
|
||||
int nnz = vec.nonZeros();
|
||||
if(rows/1.39 > nnz * log2(nnz))
|
||||
{
|
||||
std::sort(vec._innerIndexPtr(), vec._innerIndexPtr()+vec.nonZeros());
|
||||
for (typename ResultType::InnerIterator it(res, j); it; ++it)
|
||||
{
|
||||
it.valueRef() = values[it.index()];
|
||||
mask[it.index()] = false;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// dense path
|
||||
int count = 0;
|
||||
for(int i=0; i<rows; ++i)
|
||||
{
|
||||
if(mask[i])
|
||||
{
|
||||
mask[i] = false;
|
||||
vec._innerIndexPtr()[count] = i;
|
||||
vec._valuePtr()[count] = i;
|
||||
++count;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
res.finalize();
|
||||
}
|
||||
|
||||
// perform a pseudo in-place sparse * sparse product assuming all matrices are col major
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
static void ei_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
@ -257,6 +335,136 @@ inline Derived& SparseMatrixBase<Derived>::operator=(const SparseProduct<Lhs,Rhs
|
||||
}
|
||||
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType,
|
||||
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
|
||||
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,
|
||||
int ResStorageOrder = ei_traits<ResultType>::Flags&RowMajorBit>
|
||||
struct ei_sparse_product_selector2;
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
||||
{
|
||||
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
||||
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
ei_sparse_product_impl2<Lhs,Rhs,ResultType>(lhs, rhs, res, 0);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
||||
RowMajorMatrix rhsRow = rhs;
|
||||
RowMajorMatrix resRow(res.rows(), res.cols());
|
||||
ei_sparse_product_impl2<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
|
||||
res = resRow;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
||||
RowMajorMatrix lhsRow = lhs;
|
||||
RowMajorMatrix resRow(res.rows(), res.cols());
|
||||
ei_sparse_product_impl2<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
|
||||
res = resRow;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
||||
RowMajorMatrix resRow(res.rows(), res.cols());
|
||||
ei_sparse_product_impl2<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
|
||||
res = resRow;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
||||
{
|
||||
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
||||
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
||||
ColMajorMatrix resCol(res.rows(), res.cols());
|
||||
ei_sparse_product_impl2<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
|
||||
res = resCol;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
||||
ColMajorMatrix lhsCol = lhs;
|
||||
ColMajorMatrix resCol(res.rows(), res.cols());
|
||||
ei_sparse_product_impl2<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
|
||||
res = resCol;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
||||
ColMajorMatrix rhsCol = rhs;
|
||||
ColMajorMatrix resCol(res.rows(), res.cols());
|
||||
ei_sparse_product_impl2<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
|
||||
res = resCol;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
||||
// ColMajorMatrix lhsTr(lhs);
|
||||
// ColMajorMatrix rhsTr(rhs);
|
||||
// ColMajorMatrix aux(res.rows(), res.cols());
|
||||
// ei_sparse_product_impl2<Rhs,Lhs,ColMajorMatrix>(rhs, lhs, aux);
|
||||
// // ColMajorMatrix aux2 = aux.transpose();
|
||||
// res = aux;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
||||
ColMajorMatrix lhsCol(lhs);
|
||||
ColMajorMatrix rhsCol(rhs);
|
||||
ColMajorMatrix resCol(res.rows(), res.cols());
|
||||
ei_sparse_product_impl2<ColMajorMatrix,ColMajorMatrix,ColMajorMatrix>(lhsCol, rhsCol, resCol);
|
||||
res = resCol;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
template<typename Lhs, typename Rhs>
|
||||
inline void SparseMatrixBase<Derived>::_experimentalNewProduct(const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
//derived().resize(lhs.rows(), rhs.cols());
|
||||
ei_sparse_product_selector2<
|
||||
typename ei_cleantype<Lhs>::type,
|
||||
typename ei_cleantype<Rhs>::type,
|
||||
Derived>::run(lhs,rhs,derived());
|
||||
}
|
||||
|
||||
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct ei_traits<SparseTimeDenseProduct<Lhs,Rhs> >
|
||||
: ei_traits<ProductBase<SparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs> >
|
||||
|
Loading…
Reference in New Issue
Block a user