add a novel, experimental sparse product

This commit is contained in:
Gael Guennebaud 2010-01-05 15:57:16 +01:00
parent 1837b65b28
commit d8534be728
4 changed files with 232 additions and 4 deletions

View File

@ -264,10 +264,18 @@ class SparseInnerVectorSet<SparseMatrix<_Scalar, _Options>, Size>
inline const Scalar* _valuePtr() const
{ return m_matrix._valuePtr() + m_matrix._outerIndexPtr()[m_outerStart]; }
inline Scalar* _valuePtr()
{ return m_matrix.const_cast_derived()._valuePtr() + m_matrix._outerIndexPtr()[m_outerStart]; }
inline const int* _innerIndexPtr() const
{ return m_matrix._innerIndexPtr() + m_matrix._outerIndexPtr()[m_outerStart]; }
inline int* _innerIndexPtr()
{ return m_matrix.const_cast_derived()._innerIndexPtr() + m_matrix._outerIndexPtr()[m_outerStart]; }
inline const int* _outerIndexPtr() const
{ return m_matrix._outerIndexPtr() + m_outerStart; }
inline int* _outerIndexPtr()
{ return m_matrix.const_cast_derived()._outerIndexPtr() + m_outerStart; }
int nonZeros() const
{

View File

@ -201,6 +201,14 @@ class SparseMatrix
return m_data.value(id);
}
inline Scalar& insertBackNoCheck(int outer, int inner)
{
int id = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
m_data.append(0, inner);
return m_data.value(id);
}
inline void startVec(int outer)
{
ei_assert(m_outerIndex[outer]==int(m_data.size()) && "you must call startVec on each inner vec");
@ -443,7 +451,7 @@ class SparseMatrix
}
template<typename OtherDerived>
inline SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other)
EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other)
{
const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
if (needToTranspose)
@ -479,13 +487,14 @@ class SparseMatrix
m_data.resize(count);
// pass 2
for (int j=0; j<otherCopy.outerSize(); ++j)
{
for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
{
int pos = positions[it.index()]++;
m_data.index(pos) = j;
m_data.value(pos) = it.value();
}
}
return *this;
}
else

View File

@ -251,6 +251,9 @@ template<typename Derived> class SparseMatrixBase : public AnyMatrixBase<Derived
template<typename Lhs, typename Rhs>
inline Derived& operator=(const SparseProduct<Lhs,Rhs>& product);
template<typename Lhs, typename Rhs>
inline void _experimentalNewProduct(const Lhs& lhs, const Rhs& rhs);
friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m)
{
if (Flags&RowMajorBit)

View File

@ -32,8 +32,8 @@ struct SparseProductReturnType
enum {
LhsRowMajor = ei_traits<Lhs>::Flags & RowMajorBit,
RhsRowMajor = ei_traits<Rhs>::Flags & RowMajorBit,
TransposeRhs = (!LhsRowMajor) && RhsRowMajor,
TransposeLhs = LhsRowMajor && (!RhsRowMajor)
TransposeRhs = /*false,*/ (!LhsRowMajor) && RhsRowMajor,
TransposeLhs = /*false*/ LhsRowMajor && (!RhsRowMajor)
};
// FIXME if we transpose let's evaluate to a LinkedVectorMatrix since it is the
@ -136,6 +136,84 @@ class SparseProduct : ei_no_assignment_operator,
RhsNested m_rhs;
};
template<typename Lhs, typename Rhs, typename ResultType>
static void ei_sparse_product_impl2(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
// make sure to call innerSize/outerSize since we fake the storage order.
int rows = lhs.innerSize();
int cols = rhs.outerSize();
ei_assert(lhs.outerSize() == rhs.innerSize());
std::vector<bool> mask(rows,false);
// estimate the number of non zero entries
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
float ratio;
res.resize(rows, cols);
res.reserve(int(ratioRes*rows*cols));
// we compute each column of the result, one after the other
for (int j=0; j<cols; ++j)
{
res.startVec(j);
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
{
Scalar y = rhsIt.value();
int k = rhsIt.index();
for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt)
{
int i = lhsIt.index();
Scalar x = lhsIt.value();
if(!mask[i])
{
mask[i] = true;
values[i] = x * y;
res.insertBackNoCheck(j,i);
}
else
res._valuePtr()[mask[i]] += x* y;
}
}
// if the result is sparse enough => use a quick sort
// otherwise => loop through the entire vector
SparseInnerVectorSet<ResultType,1> vec(res,j);
int nnz = vec.nonZeros();
if(rows/1.39 > nnz * log2(nnz))
{
std::sort(vec._innerIndexPtr(), vec._innerIndexPtr()+vec.nonZeros());
for (typename ResultType::InnerIterator it(res, j); it; ++it)
{
it.valueRef() = values[it.index()];
mask[it.index()] = false;
}
}
else
{
// dense path
int count = 0;
for(int i=0; i<rows; ++i)
{
if(mask[i])
{
mask[i] = false;
vec._innerIndexPtr()[count] = i;
vec._valuePtr()[count] = i;
++count;
}
}
}
}
res.finalize();
}
// perform a pseudo in-place sparse * sparse product assuming all matrices are col major
template<typename Lhs, typename Rhs, typename ResultType>
static void ei_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
@ -257,6 +335,136 @@ inline Derived& SparseMatrixBase<Derived>::operator=(const SparseProduct<Lhs,Rhs
}
template<typename Lhs, typename Rhs, typename ResultType,
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,
int ResStorageOrder = ei_traits<ResultType>::Flags&RowMajorBit>
struct ei_sparse_product_selector2;
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
{
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
ei_sparse_product_impl2<Lhs,Rhs,ResultType>(lhs, rhs, res, 0);
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
RowMajorMatrix rhsRow = rhs;
RowMajorMatrix resRow(res.rows(), res.cols());
ei_sparse_product_impl2<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
res = resRow;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
RowMajorMatrix lhsRow = lhs;
RowMajorMatrix resRow(res.rows(), res.cols());
ei_sparse_product_impl2<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
res = resRow;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
RowMajorMatrix resRow(res.rows(), res.cols());
ei_sparse_product_impl2<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
res = resRow;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
{
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix resCol(res.rows(), res.cols());
ei_sparse_product_impl2<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
res = resCol;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix lhsCol = lhs;
ColMajorMatrix resCol(res.rows(), res.cols());
ei_sparse_product_impl2<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
res = resCol;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix rhsCol = rhs;
ColMajorMatrix resCol(res.rows(), res.cols());
ei_sparse_product_impl2<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
res = resCol;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
// ColMajorMatrix lhsTr(lhs);
// ColMajorMatrix rhsTr(rhs);
// ColMajorMatrix aux(res.rows(), res.cols());
// ei_sparse_product_impl2<Rhs,Lhs,ColMajorMatrix>(rhs, lhs, aux);
// // ColMajorMatrix aux2 = aux.transpose();
// res = aux;
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix lhsCol(lhs);
ColMajorMatrix rhsCol(rhs);
ColMajorMatrix resCol(res.rows(), res.cols());
ei_sparse_product_impl2<ColMajorMatrix,ColMajorMatrix,ColMajorMatrix>(lhsCol, rhsCol, resCol);
res = resCol;
}
};
template<typename Derived>
template<typename Lhs, typename Rhs>
inline void SparseMatrixBase<Derived>::_experimentalNewProduct(const Lhs& lhs, const Rhs& rhs)
{
//derived().resize(lhs.rows(), rhs.cols());
ei_sparse_product_selector2<
typename ei_cleantype<Lhs>::type,
typename ei_cleantype<Rhs>::type,
Derived>::run(lhs,rhs,derived());
}
template<typename Lhs, typename Rhs>
struct ei_traits<SparseTimeDenseProduct<Lhs,Rhs> >
: ei_traits<ProductBase<SparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs> >