mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-07 18:27:40 +08:00
Simplify redux_evaluator using inheritance, and properly rename parameters in reducers.
This commit is contained in:
parent
d428a199ab
commit
d625564936
@ -23,22 +23,22 @@ namespace internal {
|
||||
* Part 1 : the logic deciding a strategy for vectorization and unrolling
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
template<typename Func, typename Evaluator>
|
||||
struct redux_traits
|
||||
{
|
||||
public:
|
||||
typedef typename find_best_packet<typename Derived::Scalar,Derived::SizeAtCompileTime>::type PacketType;
|
||||
typedef typename find_best_packet<typename Evaluator::Scalar,Evaluator::SizeAtCompileTime>::type PacketType;
|
||||
enum {
|
||||
PacketSize = unpacket_traits<PacketType>::size,
|
||||
InnerMaxSize = int(Derived::IsRowMajor)
|
||||
? Derived::MaxColsAtCompileTime
|
||||
: Derived::MaxRowsAtCompileTime
|
||||
InnerMaxSize = int(Evaluator::IsRowMajor)
|
||||
? Evaluator::MaxColsAtCompileTime
|
||||
: Evaluator::MaxRowsAtCompileTime
|
||||
};
|
||||
|
||||
enum {
|
||||
MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
|
||||
MightVectorize = (int(Evaluator::Flags)&ActualPacketAccessBit)
|
||||
&& (functor_traits<Func>::PacketAccess),
|
||||
MayLinearVectorize = bool(MightVectorize) && (int(Derived::Flags)&LinearAccessBit),
|
||||
MayLinearVectorize = bool(MightVectorize) && (int(Evaluator::Flags)&LinearAccessBit),
|
||||
MaySliceVectorize = bool(MightVectorize) && int(InnerMaxSize)>=3*PacketSize
|
||||
};
|
||||
|
||||
@ -51,8 +51,8 @@ public:
|
||||
|
||||
public:
|
||||
enum {
|
||||
Cost = Derived::SizeAtCompileTime == Dynamic ? HugeCost
|
||||
: Derived::SizeAtCompileTime * Derived::CoeffReadCost + (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
|
||||
Cost = Evaluator::SizeAtCompileTime == Dynamic ? HugeCost
|
||||
: Evaluator::SizeAtCompileTime * Evaluator::CoeffReadCost + (Evaluator::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
|
||||
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
|
||||
};
|
||||
|
||||
@ -64,9 +64,9 @@ public:
|
||||
#ifdef EIGEN_DEBUG_ASSIGN
|
||||
static void debug()
|
||||
{
|
||||
std::cerr << "Xpr: " << typeid(typename Derived::XprType).name() << std::endl;
|
||||
std::cerr << "Xpr: " << typeid(typename Evaluator::XprType).name() << std::endl;
|
||||
std::cerr.setf(std::ios::hex, std::ios::basefield);
|
||||
EIGEN_DEBUG_VAR(Derived::Flags)
|
||||
EIGEN_DEBUG_VAR(Evaluator::Flags)
|
||||
std::cerr.unsetf(std::ios::hex);
|
||||
EIGEN_DEBUG_VAR(InnerMaxSize)
|
||||
EIGEN_DEBUG_VAR(PacketSize)
|
||||
@ -87,88 +87,88 @@ public:
|
||||
|
||||
/*** no vectorization ***/
|
||||
|
||||
template<typename Func, typename Derived, int Start, int Length>
|
||||
template<typename Func, typename Evaluator, int Start, int Length>
|
||||
struct redux_novec_unroller
|
||||
{
|
||||
enum {
|
||||
HalfLength = Length/2
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename Evaluator::Scalar Scalar;
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
|
||||
static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func& func)
|
||||
{
|
||||
return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
|
||||
redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
|
||||
return func(redux_novec_unroller<Func, Evaluator, Start, HalfLength>::run(eval,func),
|
||||
redux_novec_unroller<Func, Evaluator, Start+HalfLength, Length-HalfLength>::run(eval,func));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Func, typename Derived, int Start>
|
||||
struct redux_novec_unroller<Func, Derived, Start, 1>
|
||||
template<typename Func, typename Evaluator, int Start>
|
||||
struct redux_novec_unroller<Func, Evaluator, Start, 1>
|
||||
{
|
||||
enum {
|
||||
outer = Start / Derived::InnerSizeAtCompileTime,
|
||||
inner = Start % Derived::InnerSizeAtCompileTime
|
||||
outer = Start / Evaluator::InnerSizeAtCompileTime,
|
||||
inner = Start % Evaluator::InnerSizeAtCompileTime
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename Evaluator::Scalar Scalar;
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&)
|
||||
static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func&)
|
||||
{
|
||||
return mat.coeffByOuterInner(outer, inner);
|
||||
return eval.coeffByOuterInner(outer, inner);
|
||||
}
|
||||
};
|
||||
|
||||
// This is actually dead code and will never be called. It is required
|
||||
// to prevent false warnings regarding failed inlining though
|
||||
// for 0 length run() will never be called at all.
|
||||
template<typename Func, typename Derived, int Start>
|
||||
struct redux_novec_unroller<Func, Derived, Start, 0>
|
||||
template<typename Func, typename Evaluator, int Start>
|
||||
struct redux_novec_unroller<Func, Evaluator, Start, 0>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename Evaluator::Scalar Scalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); }
|
||||
static EIGEN_STRONG_INLINE Scalar run(const Evaluator&, const Func&) { return Scalar(); }
|
||||
};
|
||||
|
||||
/*** vectorization ***/
|
||||
|
||||
template<typename Func, typename Derived, int Start, int Length>
|
||||
template<typename Func, typename Evaluator, int Start, int Length>
|
||||
struct redux_vec_unroller
|
||||
{
|
||||
enum {
|
||||
PacketSize = redux_traits<Func, Derived>::PacketSize,
|
||||
PacketSize = redux_traits<Func, Evaluator>::PacketSize,
|
||||
HalfLength = Length/2
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
|
||||
typedef typename Evaluator::Scalar Scalar;
|
||||
typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar;
|
||||
|
||||
static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func)
|
||||
static EIGEN_STRONG_INLINE PacketScalar run(const Evaluator &eval, const Func& func)
|
||||
{
|
||||
return func.packetOp(
|
||||
redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
|
||||
redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
|
||||
redux_vec_unroller<Func, Evaluator, Start, HalfLength>::run(eval,func),
|
||||
redux_vec_unroller<Func, Evaluator, Start+HalfLength, Length-HalfLength>::run(eval,func) );
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Func, typename Derived, int Start>
|
||||
struct redux_vec_unroller<Func, Derived, Start, 1>
|
||||
template<typename Func, typename Evaluator, int Start>
|
||||
struct redux_vec_unroller<Func, Evaluator, Start, 1>
|
||||
{
|
||||
enum {
|
||||
index = Start * redux_traits<Func, Derived>::PacketSize,
|
||||
outer = index / int(Derived::InnerSizeAtCompileTime),
|
||||
inner = index % int(Derived::InnerSizeAtCompileTime),
|
||||
alignment = Derived::Alignment
|
||||
index = Start * redux_traits<Func, Evaluator>::PacketSize,
|
||||
outer = index / int(Evaluator::InnerSizeAtCompileTime),
|
||||
inner = index % int(Evaluator::InnerSizeAtCompileTime),
|
||||
alignment = Evaluator::Alignment
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
|
||||
typedef typename Evaluator::Scalar Scalar;
|
||||
typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar;
|
||||
|
||||
static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&)
|
||||
static EIGEN_STRONG_INLINE PacketScalar run(const Evaluator &eval, const Func&)
|
||||
{
|
||||
return mat.template packetByOuterInner<alignment,PacketScalar>(outer, inner);
|
||||
return eval.template packetByOuterInner<alignment,PacketScalar>(outer, inner);
|
||||
}
|
||||
};
|
||||
|
||||
@ -176,53 +176,54 @@ struct redux_vec_unroller<Func, Derived, Start, 1>
|
||||
* Part 3 : implementation of all cases
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Func, typename Derived,
|
||||
int Traversal = redux_traits<Func, Derived>::Traversal,
|
||||
int Unrolling = redux_traits<Func, Derived>::Unrolling
|
||||
template<typename Func, typename Evaluator,
|
||||
int Traversal = redux_traits<Func, Evaluator>::Traversal,
|
||||
int Unrolling = redux_traits<Func, Evaluator>::Unrolling
|
||||
>
|
||||
struct redux_impl;
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
|
||||
template<typename Func, typename Evaluator>
|
||||
struct redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
|
||||
typedef typename Evaluator::Scalar Scalar;
|
||||
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE
|
||||
Scalar run(const Evaluator &eval, const Func& func)
|
||||
{
|
||||
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
||||
eigen_assert(eval.rows()>0 && eval.cols()>0 && "you are using an empty matrix");
|
||||
Scalar res;
|
||||
res = mat.coeffByOuterInner(0, 0);
|
||||
for(Index i = 1; i < mat.innerSize(); ++i)
|
||||
res = func(res, mat.coeffByOuterInner(0, i));
|
||||
for(Index i = 1; i < mat.outerSize(); ++i)
|
||||
for(Index j = 0; j < mat.innerSize(); ++j)
|
||||
res = func(res, mat.coeffByOuterInner(i, j));
|
||||
res = eval.coeffByOuterInner(0, 0);
|
||||
for(Index i = 1; i < eval.innerSize(); ++i)
|
||||
res = func(res, eval.coeffByOuterInner(0, i));
|
||||
for(Index i = 1; i < eval.outerSize(); ++i)
|
||||
for(Index j = 0; j < eval.innerSize(); ++j)
|
||||
res = func(res, eval.coeffByOuterInner(i, j));
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling>
|
||||
: public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
|
||||
template<typename Func, typename Evaluator>
|
||||
struct redux_impl<Func,Evaluator, DefaultTraversal, CompleteUnrolling>
|
||||
: redux_novec_unroller<Func,Evaluator, 0, Evaluator::SizeAtCompileTime>
|
||||
{};
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
|
||||
template<typename Func, typename Evaluator>
|
||||
struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
|
||||
typedef typename Evaluator::Scalar Scalar;
|
||||
typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar;
|
||||
|
||||
static Scalar run(const Derived &mat, const Func& func)
|
||||
static Scalar run(const Evaluator &eval, const Func& func)
|
||||
{
|
||||
const Index size = mat.size();
|
||||
const Index size = eval.size();
|
||||
|
||||
const Index packetSize = redux_traits<Func, Derived>::PacketSize;
|
||||
const Index packetSize = redux_traits<Func, Evaluator>::PacketSize;
|
||||
const int packetAlignment = unpacket_traits<PacketScalar>::alignment;
|
||||
enum {
|
||||
alignment0 = (bool(Derived::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned),
|
||||
alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Derived::Alignment)
|
||||
alignment0 = (bool(Evaluator::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned),
|
||||
alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Evaluator::Alignment)
|
||||
};
|
||||
const Index alignedStart = internal::first_default_aligned(mat.nestedExpression());
|
||||
const Index alignedStart = internal::first_default_aligned(eval.nestedExpression());
|
||||
const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize);
|
||||
const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize);
|
||||
const Index alignedEnd2 = alignedStart + alignedSize2;
|
||||
@ -230,34 +231,34 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
|
||||
Scalar res;
|
||||
if(alignedSize)
|
||||
{
|
||||
PacketScalar packet_res0 = mat.template packet<alignment,PacketScalar>(alignedStart);
|
||||
PacketScalar packet_res0 = eval.template packet<alignment,PacketScalar>(alignedStart);
|
||||
if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop
|
||||
{
|
||||
PacketScalar packet_res1 = mat.template packet<alignment,PacketScalar>(alignedStart+packetSize);
|
||||
PacketScalar packet_res1 = eval.template packet<alignment,PacketScalar>(alignedStart+packetSize);
|
||||
for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize)
|
||||
{
|
||||
packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment,PacketScalar>(index));
|
||||
packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment,PacketScalar>(index+packetSize));
|
||||
packet_res0 = func.packetOp(packet_res0, eval.template packet<alignment,PacketScalar>(index));
|
||||
packet_res1 = func.packetOp(packet_res1, eval.template packet<alignment,PacketScalar>(index+packetSize));
|
||||
}
|
||||
|
||||
packet_res0 = func.packetOp(packet_res0,packet_res1);
|
||||
if(alignedEnd>alignedEnd2)
|
||||
packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment,PacketScalar>(alignedEnd2));
|
||||
packet_res0 = func.packetOp(packet_res0, eval.template packet<alignment,PacketScalar>(alignedEnd2));
|
||||
}
|
||||
res = func.predux(packet_res0);
|
||||
|
||||
for(Index index = 0; index < alignedStart; ++index)
|
||||
res = func(res,mat.coeff(index));
|
||||
res = func(res,eval.coeff(index));
|
||||
|
||||
for(Index index = alignedEnd; index < size; ++index)
|
||||
res = func(res,mat.coeff(index));
|
||||
res = func(res,eval.coeff(index));
|
||||
}
|
||||
else // too small to vectorize anything.
|
||||
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
||||
{
|
||||
res = mat.coeff(0);
|
||||
res = eval.coeff(0);
|
||||
for(Index index = 1; index < size; ++index)
|
||||
res = func(res,mat.coeff(index));
|
||||
res = func(res,eval.coeff(index));
|
||||
}
|
||||
|
||||
return res;
|
||||
@ -265,77 +266,80 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
|
||||
};
|
||||
|
||||
// NOTE: for SliceVectorizedTraversal we simply bypass unrolling
|
||||
template<typename Func, typename Derived, int Unrolling>
|
||||
struct redux_impl<Func, Derived, SliceVectorizedTraversal, Unrolling>
|
||||
template<typename Func, typename Evaluator, int Unrolling>
|
||||
struct redux_impl<Func, Evaluator, SliceVectorizedTraversal, Unrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename redux_traits<Func, Derived>::PacketType PacketType;
|
||||
typedef typename Evaluator::Scalar Scalar;
|
||||
typedef typename redux_traits<Func, Evaluator>::PacketType PacketType;
|
||||
|
||||
EIGEN_DEVICE_FUNC static Scalar run(const Derived &mat, const Func& func)
|
||||
EIGEN_DEVICE_FUNC static Scalar run(const Evaluator &eval, const Func& func)
|
||||
{
|
||||
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
||||
const Index innerSize = mat.innerSize();
|
||||
const Index outerSize = mat.outerSize();
|
||||
eigen_assert(eval.rows()>0 && eval.cols()>0 && "you are using an empty matrix");
|
||||
const Index innerSize = eval.innerSize();
|
||||
const Index outerSize = eval.outerSize();
|
||||
enum {
|
||||
packetSize = redux_traits<Func, Derived>::PacketSize
|
||||
packetSize = redux_traits<Func, Evaluator>::PacketSize
|
||||
};
|
||||
const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize;
|
||||
Scalar res;
|
||||
if(packetedInnerSize)
|
||||
{
|
||||
PacketType packet_res = mat.template packet<Unaligned,PacketType>(0,0);
|
||||
PacketType packet_res = eval.template packet<Unaligned,PacketType>(0,0);
|
||||
for(Index j=0; j<outerSize; ++j)
|
||||
for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize))
|
||||
packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned,PacketType>(j,i));
|
||||
packet_res = func.packetOp(packet_res, eval.template packetByOuterInner<Unaligned,PacketType>(j,i));
|
||||
|
||||
res = func.predux(packet_res);
|
||||
for(Index j=0; j<outerSize; ++j)
|
||||
for(Index i=packetedInnerSize; i<innerSize; ++i)
|
||||
res = func(res, mat.coeffByOuterInner(j,i));
|
||||
res = func(res, eval.coeffByOuterInner(j,i));
|
||||
}
|
||||
else // too small to vectorize anything.
|
||||
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
||||
{
|
||||
res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func);
|
||||
res = redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling>::run(eval, func);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
|
||||
template<typename Func, typename Evaluator>
|
||||
struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, CompleteUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename Evaluator::Scalar Scalar;
|
||||
|
||||
typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
|
||||
typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar;
|
||||
enum {
|
||||
PacketSize = redux_traits<Func, Derived>::PacketSize,
|
||||
Size = Derived::SizeAtCompileTime,
|
||||
PacketSize = redux_traits<Func, Evaluator>::PacketSize,
|
||||
Size = Evaluator::SizeAtCompileTime,
|
||||
VectorizedSize = (Size / PacketSize) * PacketSize
|
||||
};
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
|
||||
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE
|
||||
Scalar run(const Evaluator &eval, const Func& func)
|
||||
{
|
||||
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
|
||||
eigen_assert(eval.rows()>0 && eval.cols()>0 && "you are using an empty matrix");
|
||||
if (VectorizedSize > 0) {
|
||||
Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
|
||||
Scalar res = func.predux(redux_vec_unroller<Func, Evaluator, 0, Size / PacketSize>::run(eval,func));
|
||||
if (VectorizedSize != Size)
|
||||
res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func));
|
||||
res = func(res,redux_novec_unroller<Func, Evaluator, VectorizedSize, Size-VectorizedSize>::run(eval,func));
|
||||
return res;
|
||||
}
|
||||
else {
|
||||
return redux_novec_unroller<Func, Derived, 0, Size>::run(mat,func);
|
||||
return redux_novec_unroller<Func, Evaluator, 0, Size>::run(eval,func);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// evaluator adaptor
|
||||
template<typename _XprType>
|
||||
class redux_evaluator
|
||||
class redux_evaluator : public internal::evaluator<_XprType>
|
||||
{
|
||||
typedef internal::evaluator<_XprType> Base;
|
||||
public:
|
||||
typedef _XprType XprType;
|
||||
EIGEN_DEVICE_FUNC explicit redux_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {}
|
||||
EIGEN_DEVICE_FUNC explicit redux_evaluator(const XprType &xpr) : Base(xpr), m_xpr(xpr) {}
|
||||
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
@ -346,12 +350,10 @@ public:
|
||||
MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = XprType::MaxColsAtCompileTime,
|
||||
// TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime from the evaluator
|
||||
Flags = evaluator<XprType>::Flags & ~DirectAccessBit,
|
||||
Flags = Base::Flags & ~DirectAccessBit,
|
||||
IsRowMajor = XprType::IsRowMajor,
|
||||
SizeAtCompileTime = XprType::SizeAtCompileTime,
|
||||
InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime,
|
||||
CoeffReadCost = evaluator<XprType>::CoeffReadCost,
|
||||
Alignment = evaluator<XprType>::Alignment
|
||||
InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); }
|
||||
@ -359,35 +361,18 @@ public:
|
||||
EIGEN_DEVICE_FUNC Index size() const { return m_xpr.size(); }
|
||||
EIGEN_DEVICE_FUNC Index innerSize() const { return m_xpr.innerSize(); }
|
||||
EIGEN_DEVICE_FUNC Index outerSize() const { return m_xpr.outerSize(); }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
CoeffReturnType coeff(Index row, Index col) const
|
||||
{ return m_evaluator.coeff(row, col); }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
CoeffReturnType coeff(Index index) const
|
||||
{ return m_evaluator.coeff(index); }
|
||||
|
||||
template<int LoadMode, typename PacketType>
|
||||
PacketType packet(Index row, Index col) const
|
||||
{ return m_evaluator.template packet<LoadMode,PacketType>(row, col); }
|
||||
|
||||
template<int LoadMode, typename PacketType>
|
||||
PacketType packet(Index index) const
|
||||
{ return m_evaluator.template packet<LoadMode,PacketType>(index); }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
|
||||
{ return m_evaluator.coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
|
||||
{ return Base::coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
|
||||
|
||||
template<int LoadMode, typename PacketType>
|
||||
PacketType packetByOuterInner(Index outer, Index inner) const
|
||||
{ return m_evaluator.template packet<LoadMode,PacketType>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
|
||||
{ return Base::template packet<LoadMode,PacketType>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
|
||||
|
||||
const XprType & nestedExpression() const { return m_xpr; }
|
||||
|
||||
protected:
|
||||
internal::evaluator<XprType> m_evaluator;
|
||||
const XprType &m_xpr;
|
||||
};
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user