mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-02-23 18:20:47 +08:00
Fix bug #609: Euler angles are in Range [0:pi]x[-pi:pi]x[-pi:pi].
Now the unit test verifies this (also that it is bijective in this range).
This commit is contained in:
parent
49034d1570
commit
d61345f366
@ -28,7 +28,7 @@ namespace Eigen {
|
||||
* * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode
|
||||
* This corresponds to the right-multiply conventions (with right hand side frames).
|
||||
*
|
||||
* The returned angles are in the ranges [0:pi]x[0:pi]x[-pi:pi].
|
||||
* The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
|
||||
*
|
||||
* \sa class AngleAxis
|
||||
*/
|
||||
|
@ -12,36 +12,48 @@
|
||||
#include <Eigen/LU>
|
||||
#include <Eigen/SVD>
|
||||
|
||||
template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
|
||||
|
||||
template<typename Scalar>
|
||||
void verify_euler(const Matrix<Scalar,3,1>& ea, int i, int j, int k)
|
||||
{
|
||||
typedef Matrix<Scalar,3,3> Matrix3;
|
||||
typedef Matrix<Scalar,3,1> Vector3;
|
||||
typedef AngleAxis<Scalar> AngleAxisx;
|
||||
using std::abs;
|
||||
Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * AngleAxisx(ea[2], Vector3::Unit(k)));
|
||||
Vector3 eabis = m.eulerAngles(i, j, k);
|
||||
Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * AngleAxisx(eabis[2], Vector3::Unit(k)));
|
||||
VERIFY_IS_APPROX(m, mbis);
|
||||
/* If I==K, and ea[1]==0, then there no unique solution. */
|
||||
/* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */
|
||||
if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(M_PI/2),test_precision<Scalar>())) )
|
||||
VERIFY((ea-eabis).norm() <= test_precision<Scalar>());
|
||||
|
||||
#define VERIFY_EULER(I,J,K, X,Y,Z) { \
|
||||
Matrix3 m(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \
|
||||
Vector3 eabis = m.eulerAngles(I,J,K); \
|
||||
Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit##X()) * AngleAxisx(eabis[1], Vector3::Unit##Y()) * AngleAxisx(eabis[2], Vector3::Unit##Z())); \
|
||||
VERIFY_IS_APPROX(m, mbis); \
|
||||
/* If I==K, and ea[1]==0, then there no unique solution. */ \
|
||||
/* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */ \
|
||||
if( (I!=K || ea[1]!=0) && (I==K || !internal::isApprox(abs(ea[1]),Scalar(M_PI/2),test_precision<Scalar>())) ) VERIFY((ea-eabis).norm() <= test_precision<Scalar>()); \
|
||||
}
|
||||
VERIFY_EULER(0,1,2, X,Y,Z);
|
||||
VERIFY_EULER(0,1,0, X,Y,X);
|
||||
VERIFY_EULER(0,2,1, X,Z,Y);
|
||||
VERIFY_EULER(0,2,0, X,Z,X);
|
||||
// approx_or_less_than does not work for 0
|
||||
VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
|
||||
VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(M_PI));
|
||||
VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(M_PI), eabis[1]);
|
||||
VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(M_PI));
|
||||
VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(M_PI), eabis[2]);
|
||||
VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(M_PI));
|
||||
}
|
||||
|
||||
VERIFY_EULER(1,2,0, Y,Z,X);
|
||||
VERIFY_EULER(1,2,1, Y,Z,Y);
|
||||
VERIFY_EULER(1,0,2, Y,X,Z);
|
||||
VERIFY_EULER(1,0,1, Y,X,Y);
|
||||
template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
|
||||
{
|
||||
verify_euler(ea, 0,1,2);
|
||||
verify_euler(ea, 0,1,0);
|
||||
verify_euler(ea, 0,2,1);
|
||||
verify_euler(ea, 0,2,0);
|
||||
|
||||
VERIFY_EULER(2,0,1, Z,X,Y);
|
||||
VERIFY_EULER(2,0,2, Z,X,Z);
|
||||
VERIFY_EULER(2,1,0, Z,Y,X);
|
||||
VERIFY_EULER(2,1,2, Z,Y,Z);
|
||||
verify_euler(ea, 1,2,0);
|
||||
verify_euler(ea, 1,2,1);
|
||||
verify_euler(ea, 1,0,2);
|
||||
verify_euler(ea, 1,0,1);
|
||||
|
||||
verify_euler(ea, 2,0,1);
|
||||
verify_euler(ea, 2,0,2);
|
||||
verify_euler(ea, 2,1,0);
|
||||
verify_euler(ea, 2,1,2);
|
||||
}
|
||||
|
||||
template<typename Scalar> void eulerangles()
|
||||
@ -63,7 +75,16 @@ template<typename Scalar> void eulerangles()
|
||||
ea = m.eulerAngles(0,1,0);
|
||||
check_all_var(ea);
|
||||
|
||||
ea = (Array3::Random() + Array3(1,1,0))*Scalar(M_PI)*Array3(0.5,0.5,1);
|
||||
// Check with purely random Quaternion:
|
||||
q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
|
||||
m = q1;
|
||||
ea = m.eulerAngles(0,1,2);
|
||||
check_all_var(ea);
|
||||
ea = m.eulerAngles(0,1,0);
|
||||
check_all_var(ea);
|
||||
|
||||
// Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
|
||||
ea = (Array3::Random() + Array3(1,0,0))*Scalar(M_PI)*Array3(0.5,1,1);
|
||||
check_all_var(ea);
|
||||
|
||||
ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(M_PI));
|
||||
|
Loading…
Reference in New Issue
Block a user