Code cleanup

This commit is contained in:
Benoit Steiner 2015-11-06 14:54:28 -08:00
parent 9fa283339f
commit d573efe303
3 changed files with 141 additions and 181 deletions

View File

@ -74,6 +74,7 @@
#include "src/Tensor/TensorEvaluator.h"
#include "src/Tensor/TensorExpr.h"
#include "src/Tensor/TensorReduction.h"
#include "src/Tensor/TensorReductionCuda.h"
#include "src/Tensor/TensorArgMax.h"
#include "src/Tensor/TensorConcatenation.h"
#include "src/Tensor/TensorContraction.h"

View File

@ -336,187 +336,6 @@ struct FullReducer<Self, Op, ThreadPoolDevice, true> {
};
#endif
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
// Full reducers for GPU, don't vectorize for now
// Reducer function that enables multiple cuda thread to safely accumulate at the same
// output address. It basically reads the current value of the output variable, and
// attempts to update it with the new value. If in the meantime another cuda thread
// updated the content of the output address it will try again.
template <typename T, typename R>
__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
#if __CUDA_ARCH__ >= 300
if (sizeof(T) == 4)
{
unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
unsigned int newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
unsigned int readback;
while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
oldval = readback;
newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
}
}
else if (sizeof(T) == 8) {
unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output);
unsigned long long newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
unsigned long long readback;
while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) {
oldval = readback;
newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
}
}
else {
assert(0 && "Wordsize not supported");
}
#else
assert(0 && "Shouldn't be called on unsupported device");
#endif
}
template <typename T>
__device__ inline void atomicReduce(T* output, T accum, SumReducer<T>&) {
#if __CUDA_ARCH__ >= 300
atomicAdd(output, accum);
#else
assert(0 && "Shouldn't be called on unsupported device");
#endif
}
template <int BlockSize, int NumPerThread, typename Self,
typename Reducer, typename Index>
__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
typename Self::CoeffReturnType* output) {
const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
if (first_index == 0) {
*output = reducer.initialize();
}
typename Self::CoeffReturnType accum = reducer.initialize();
for (Index i = 0; i < NumPerThread; ++i) {
const Index index = first_index + i * BlockSize;
if (index >= num_coeffs) {
break;
}
typename Self::CoeffReturnType val = input.m_impl.coeff(index);
reducer.reduce(val, &accum);
}
for (int offset = warpSize/2; offset > 0; offset /= 2) {
reducer.reduce(__shfl_down(accum, offset), &accum);
}
if ((threadIdx.x & (warpSize - 1)) == 0) {
atomicReduce(output, accum, reducer);
}
}
template <typename Self, typename Op, bool Vectorizable>
struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
// Unfortunately nvidia doesn't support well exotic types such as complex,
// so reduce the scope of the optimized version of the code to the simple case
// of floats.
static const bool HasOptimizedImplementation = !Op::IsStateful &&
internal::is_same<typename Self::CoeffReturnType, float>::value;
template <typename OutputType>
static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
assert(false && "Should only be called on floats");
}
static void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
typedef typename Self::Index Index;
const Index num_coeffs = array_prod(self.m_impl.dimensions());
const int block_size = 256;
const int num_per_thread = 128;
const int num_blocks = std::ceil(static_cast<float>(num_coeffs) / (block_size * num_per_thread));
LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs, output);
}
};
#endif
template <typename Self, typename Op,
bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
class BlockReducer {
public:
typedef typename Self::Index Index;
typedef typename Self::Scalar Scalar;
typedef typename Self::CoeffReturnType CoeffReturnType;
explicit BlockReducer(const Op& reducer) : op_(reducer) {
accum_ = op_.initialize();
}
void Reduce(Index index, Index num_values_to_reduce, Scalar* data) {
for (Index i = 0; i < num_values_to_reduce; ++i) {
op_.reduce(data[index + i], &accum_);
}
}
CoeffReturnType Finalize() {
return op_.finalize(accum_);
}
private:
CoeffReturnType accum_;
Op op_;
};
template <typename Self, typename Op>
class BlockReducer<Self, Op, true> {
public:
typedef typename Self::Index Index;
typedef typename Self::Scalar Scalar;
typedef typename Self::CoeffReturnType CoeffReturnType;
typedef typename Self::PacketReturnType PacketReturnType;
explicit BlockReducer(const Op& reducer) : op_(reducer) {
vaccum_ = op_.template initializePacket<PacketReturnType>();
accum_ = op_.initialize();
}
void Reduce(Index index, Index num_values_to_reduce, Scalar* data) {
const int packet_size = internal::unpacket_traits<PacketReturnType>::size;
const typename Self::Index vectorized_size = (num_values_to_reduce /
packet_size) * packet_size;
for (typename Self::Index i = 0; i < vectorized_size; i += packet_size) {
op_.reducePacket(internal::ploadt<PacketReturnType, Unaligned>(
&data[index + i]), &vaccum_);
}
for (typename Self::Index i = vectorized_size;
i < num_values_to_reduce; ++i) {
op_.reduce(data[index + i], &accum_);
}
}
typename Self::CoeffReturnType Finalize() {
return op_.finalizeBoth(accum_, vaccum_);
}
private:
typename Self::PacketReturnType vaccum_;
typename Self::CoeffReturnType accum_;
Op op_;
};
} // end namespace internal

View File

@ -0,0 +1,140 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
namespace Eigen {
namespace internal {
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
// Full reducers for GPU, don't vectorize for now
// Reducer function that enables multiple cuda thread to safely accumulate at the same
// output address. It basically reads the current value of the output variable, and
// attempts to update it with the new value. If in the meantime another cuda thread
// updated the content of the output address it will try again.
template <typename T, typename R>
__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
#if __CUDA_ARCH__ >= 300
if (sizeof(T) == 4)
{
unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
unsigned int newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
unsigned int readback;
while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
oldval = readback;
newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
}
}
else if (sizeof(T) == 8) {
unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output);
unsigned long long newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
unsigned long long readback;
while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) {
oldval = readback;
newval = oldval;
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
if (newval == oldval) {
return;
}
}
}
else {
assert(0 && "Wordsize not supported");
}
#else
assert(0 && "Shouldn't be called on unsupported device");
#endif
}
template <typename T>
__device__ inline void atomicReduce(T* output, T accum, SumReducer<T>&) {
#if __CUDA_ARCH__ >= 300
atomicAdd(output, accum);
#else
assert(0 && "Shouldn't be called on unsupported device");
#endif
}
template <int BlockSize, int NumPerThread, typename Self,
typename Reducer, typename Index>
__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
typename Self::CoeffReturnType* output) {
const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
if (first_index == 0) {
*output = reducer.initialize();
}
typename Self::CoeffReturnType accum = reducer.initialize();
for (Index i = 0; i < NumPerThread; ++i) {
const Index index = first_index + i * BlockSize;
if (index >= num_coeffs) {
break;
}
typename Self::CoeffReturnType val = input.m_impl.coeff(index);
reducer.reduce(val, &accum);
}
for (int offset = warpSize/2; offset > 0; offset /= 2) {
reducer.reduce(__shfl_down(accum, offset), &accum);
}
if ((threadIdx.x & (warpSize - 1)) == 0) {
atomicReduce(output, accum, reducer);
}
}
template <typename Self, typename Op, bool Vectorizable>
struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
// Unfortunately nvidia doesn't support well exotic types such as complex,
// so reduce the scope of the optimized version of the code to the simple case
// of floats.
static const bool HasOptimizedImplementation = !Op::IsStateful &&
internal::is_same<typename Self::CoeffReturnType, float>::value;
template <typename OutputType>
EIGEN_DEVICE_FUNC static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
assert(false && "Should only be called on floats");
}
EIGEN_DEVICE_FUNC static void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
typedef typename Self::Index Index;
const Index num_coeffs = array_prod(self.m_impl.dimensions());
const int block_size = 256;
const int num_per_thread = 128;
const int num_blocks = std::ceil(static_cast<float>(num_coeffs) / (block_size * num_per_thread));
LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs, output);
}
};
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H