cleaning, fixing most goto's

This commit is contained in:
Thomas Capricelli 2009-08-24 15:13:12 +02:00
parent e65a7c7c70
commit d4968cd059

View File

@ -47,9 +47,9 @@ int ei_lmder(
/* check the input parameters for errors. */
if (n <= 0 || m < n || ftol < 0. || xtol < 0. ||
gtol < 0. || maxfev <= 0 || factor <= 0.) {
gtol < 0. || maxfev <= 0 || factor <= 0.)
goto L300;
}
if (mode == 2)
for (j = 0; j < n; ++j)
if (diag[j] <= 0.) goto L300;
@ -59,9 +59,8 @@ int ei_lmder(
iflag = Functor::f(x, fvec);
nfev = 1;
if (iflag < 0) {
if (iflag < 0)
goto L300;
}
fnorm = fvec.stableNorm();
/* initialize levenberg-marquardt parameter and iteration counter. */
@ -71,283 +70,218 @@ int ei_lmder(
/* beginning of the outer loop. */
L30:
while(true) {
/* calculate the jacobian matrix. */
/* calculate the jacobian matrix. */
iflag = Functor::df(x, fjac);
++njev;
if (iflag < 0) {
goto L300;
}
iflag = Functor::df(x, fjac);
++njev;
if (iflag < 0)
break;
/* if requested, call Functor::f to enable printing of iterates. */
/* if requested, call Functor::f to enable printing of iterates. */
if (nprint <= 0) {
goto L40;
}
iflag = 0;
if ((iter - 1) % nprint == 0) {
iflag = Functor::debug(x, fvec, fjac);
}
if (iflag < 0) {
goto L300;
}
L40:
/* compute the qr factorization of the jacobian. */
ei_qrfac<Scalar>(m, n, fjac.data(), fjac.rows(), true, ipvt.data(), n, wa1.data(), wa2.data());
ipvt.cwise()-=1; // qrfac() creates ipvt with fortran convetion (1->n), convert it to c (0->n-1)
/* on the first iteration and if mode is 1, scale according */
/* to the norms of the columns of the initial jacobian. */
if (iter != 1) {
goto L80;
}
if (mode == 2) {
goto L60;
}
for (j = 0; j < n; ++j) {
diag[j] = wa2[j];
if (wa2[j] == 0.) {
diag[j] = 1.;
if (nprint > 0) {
iflag = 0;
if ((iter - 1) % nprint == 0)
iflag = Functor::debug(x, fvec, fjac);
if (iflag < 0)
break;
}
/* L50: */
}
L60:
/* on the first iteration, calculate the norm of the scaled x */
/* and initialize the step bound delta. */
/* compute the qr factorization of the jacobian. */
wa3 = diag.cwise() * x;
xnorm = wa3.stableNorm();
delta = factor * xnorm;
if (delta == 0.) {
delta = factor;
}
L80:
ei_qrfac<Scalar>(m, n, fjac.data(), fjac.rows(), true, ipvt.data(), n, wa1.data(), wa2.data());
ipvt.cwise()-=1; // qrfac() creates ipvt with fortran convetion (1->n), convert it to c (0->n-1)
/* form (q transpose)*fvec and store the first n components in */
/* qtf. */
/* on the first iteration and if mode is 1, scale according */
/* to the norms of the columns of the initial jacobian. */
wa4 = fvec;
for (j = 0; j < n; ++j) {
if (fjac(j,j) == 0.) {
goto L120;
if (iter == 1) {
if (mode != 2)
for (j = 0; j < n; ++j) {
diag[j] = wa2[j];
if (wa2[j] == 0.)
diag[j] = 1.;
}
/* on the first iteration, calculate the norm of the scaled x */
/* and initialize the step bound delta. */
wa3 = diag.cwise() * x;
xnorm = wa3.stableNorm();
delta = factor * xnorm;
if (delta == 0.)
delta = factor;
}
sum = 0.;
for (i = j; i < m; ++i) {
sum += fjac(i,j) * wa4[i];
/* L100: */
/* form (q transpose)*fvec and store the first n components in */
/* qtf. */
wa4 = fvec;
for (j = 0; j < n; ++j) {
if (fjac(j,j) != 0.) {
sum = 0.;
for (i = j; i < m; ++i)
sum += fjac(i,j) * wa4[i];
temp = -sum / fjac(j,j);
for (i = j; i < m; ++i)
wa4[i] += fjac(i,j) * temp;
}
fjac(j,j) = wa1[j];
qtf[j] = wa4[j];
}
temp = -sum / fjac(j,j);
for (i = j; i < m; ++i) {
wa4[i] += fjac(i,j) * temp;
/* L110: */
/* compute the norm of the scaled gradient. */
gnorm = 0.;
if (fnorm != 0.)
for (j = 0; j < n; ++j) {
l = ipvt[j];
if (wa2[l] != 0.) {
sum = 0.;
for (i = 0; i <= j; ++i)
sum += fjac(i,j) * (qtf[i] / fnorm);
/* Computing MAX */
gnorm = std::max(gnorm, ei_abs(sum / wa2[l]));
}
}
/* test for convergence of the gradient norm. */
if (gnorm <= gtol) {
info = 4;
}
L120:
fjac(j,j) = wa1[j];
qtf[j] = wa4[j];
/* L130: */
if (info != 0)
break;
/* rescale if necessary. */
if (mode != 2) /* Computing MAX */
diag = diag.cwise().max(wa2);
/* beginning of the inner loop. */
do {
/* determine the levenberg-marquardt parameter. */
ei_lmpar<Scalar>(fjac, ipvt, diag, qtf, delta, par, wa1, wa2);
/* store the direction p and x + p. calculate the norm of p. */
wa1 = -wa1;
wa2 = x + wa1;
wa3 = diag.cwise() * wa1;
pnorm = wa3.stableNorm();
/* on the first iteration, adjust the initial step bound. */
if (iter == 1) {
delta = std::min(delta,pnorm);
}
/* evaluate the function at x + p and calculate its norm. */
iflag = Functor::f(wa2, wa4);
++nfev;
if (iflag < 0)
goto L300;
fnorm1 = wa4.stableNorm();
/* compute the scaled actual reduction. */
actred = -1.;
if (Scalar(.1) * fnorm1 < fnorm) /* Computing 2nd power */
actred = 1. - ei_abs2(fnorm1 / fnorm);
/* compute the scaled predicted reduction and */
/* the scaled directional derivative. */
wa3.fill(0.);
for (j = 0; j < n; ++j) {
l = ipvt[j];
temp = wa1[l];
for (i = 0; i <= j; ++i) {
wa3[i] += fjac(i,j) * temp;
}
}
temp1 = ei_abs2(wa3.stableNorm() / fnorm);
temp2 = ei_abs2(ei_sqrt(par) * pnorm / fnorm);
/* Computing 2nd power */
prered = temp1 + temp2 / Scalar(.5);
dirder = -(temp1 + temp2);
/* compute the ratio of the actual to the predicted */
/* reduction. */
ratio = 0.;
if (prered != 0.)
ratio = actred / prered;
/* update the step bound. */
if (ratio <= Scalar(.25)) {
if (actred >= 0.)
temp = Scalar(.5);
if (actred < 0.)
temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
temp = Scalar(.1);
/* Computing MIN */
delta = temp * std::min(delta, pnorm / Scalar(.1));
par /= temp;
}
else {
if (!(par != 0. && ratio < Scalar(.75))) {
delta = pnorm / Scalar(.5);
par = Scalar(.5) * par;
}
}
/* test for successful iteration. */
if (ratio >= Scalar(1e-4)) {
/* successful iteration. update x, fvec, and their norms. */
x = wa2;
wa2 = diag.cwise() * x;
fvec = wa4;
xnorm = wa2.stableNorm();
fnorm = fnorm1;
++iter;
}
/* tests for convergence. */
if (ei_abs(actred) <= ftol && prered <= ftol && Scalar(.5) * ratio <= 1.)
info = 1;
if (delta <= xtol * xnorm)
info = 2;
if (ei_abs(actred) <= ftol && prered <= ftol && Scalar(.5) * ratio <= 1. && info == 2)
info = 3;
if (info != 0)
goto L300;
/* tests for termination and stringent tolerances. */
if (nfev >= maxfev)
info = 5;
if (ei_abs(actred) <= epsilon<Scalar>() && prered <= epsilon<Scalar>() && Scalar(.5) * ratio <= 1.)
info = 6;
if (delta <= epsilon<Scalar>() * xnorm)
info = 7;
if (gnorm <= epsilon<Scalar>())
info = 8;
if (info != 0)
goto L300;
/* end of the inner loop. repeat if iteration unsuccessful. */
} while (ratio < Scalar(1e-4));
/* end of the outer loop. */
}
/* compute the norm of the scaled gradient. */
gnorm = 0.;
if (fnorm == 0.) {
goto L170;
}
for (j = 0; j < n; ++j) {
l = ipvt[j];
if (wa2[l] != 0.) {
sum = 0.;
for (i = 0; i <= j; ++i)
sum += fjac(i,j) * (qtf[i] / fnorm);
/* Computing MAX */
gnorm = std::max(gnorm, ei_abs(sum / wa2[l]));
}
}
L170:
/* test for convergence of the gradient norm. */
if (gnorm <= gtol) {
info = 4;
}
if (info != 0) {
goto L300;
}
/* rescale if necessary. */
if (mode == 2) {
goto L190;
}
/* Computing MAX */
diag = diag.cwise().max(wa2);
L190:
/* beginning of the inner loop. */
L200:
/* determine the levenberg-marquardt parameter. */
ei_lmpar<Scalar>(fjac, ipvt, diag, qtf, delta, par, wa1, wa2);
/* store the direction p and x + p. calculate the norm of p. */
wa1 = -wa1;
wa2 = x + wa1;
wa3 = diag.cwise() * wa1;
pnorm = wa3.stableNorm();
/* on the first iteration, adjust the initial step bound. */
if (iter == 1) {
delta = std::min(delta,pnorm);
}
/* evaluate the function at x + p and calculate its norm. */
iflag = Functor::f(wa2, wa4);
++nfev;
if (iflag < 0) {
goto L300;
}
fnorm1 = wa4.stableNorm();
/* compute the scaled actual reduction. */
actred = -1.;
if (Scalar(.1) * fnorm1 < fnorm) /* Computing 2nd power */
actred = 1. - ei_abs2(fnorm1 / fnorm);
/* compute the scaled predicted reduction and */
/* the scaled directional derivative. */
wa3.fill(0.);
for (j = 0; j < n; ++j) {
l = ipvt[j];
temp = wa1[l];
for (i = 0; i <= j; ++i) {
wa3[i] += fjac(i,j) * temp;
/* L220: */
}
/* L230: */
}
temp1 = ei_abs2(wa3.stableNorm() / fnorm);
temp2 = ei_abs2(ei_sqrt(par) * pnorm / fnorm);
/* Computing 2nd power */
prered = temp1 + temp2 / Scalar(.5);
dirder = -(temp1 + temp2);
/* compute the ratio of the actual to the predicted */
/* reduction. */
ratio = 0.;
if (prered != 0.) {
ratio = actred / prered;
}
/* update the step bound. */
if (ratio > Scalar(.25)) {
goto L240;
}
if (actred >= 0.) {
temp = Scalar(.5);
}
if (actred < 0.) {
temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
}
if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
temp = Scalar(.1);
/* Computing MIN */
delta = temp * std::min(delta, pnorm / Scalar(.1));
par /= temp;
goto L260;
L240:
if (par != 0. && ratio < Scalar(.75)) {
goto L250;
}
delta = pnorm / Scalar(.5);
par = Scalar(.5) * par;
L250:
L260:
/* test for successful iteration. */
if (ratio < Scalar(1e-4)) {
goto L290;
}
/* successful iteration. update x, fvec, and their norms. */
x = wa2;
wa2 = diag.cwise() * x;
fvec = wa4;
xnorm = wa2.stableNorm();
fnorm = fnorm1;
++iter;
L290:
/* tests for convergence. */
if (ei_abs(actred) <= ftol && prered <= ftol && Scalar(.5) * ratio <= 1.) {
info = 1;
}
if (delta <= xtol * xnorm) {
info = 2;
}
if (ei_abs(actred) <= ftol && prered <= ftol && Scalar(.5) * ratio <= 1. && info
== 2) {
info = 3;
}
if (info != 0) {
goto L300;
}
/* tests for termination and stringent tolerances. */
if (nfev >= maxfev) {
info = 5;
}
if (ei_abs(actred) <= epsilon<Scalar>() && prered <= epsilon<Scalar>() && Scalar(.5) * ratio <= 1.) {
info = 6;
}
if (delta <= epsilon<Scalar>() * xnorm) {
info = 7;
}
if (gnorm <= epsilon<Scalar>()) {
info = 8;
}
if (info != 0) {
goto L300;
}
/* end of the inner loop. repeat if iteration unsuccessful. */
if (ratio < Scalar(1e-4)) {
goto L200;
}
/* end of the outer loop. */
goto L30;
L300:
/* termination, either normal or user imposed. */
if (iflag < 0) {
if (iflag < 0)
info = iflag;
}
iflag = 0;
if (nprint > 0) {
if (nprint > 0)
iflag = Functor::debug(x, fvec, fjac);
}
return info;
}