mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
cleaning, fixing most goto's
This commit is contained in:
parent
e65a7c7c70
commit
d4968cd059
@ -47,9 +47,9 @@ int ei_lmder(
|
||||
/* check the input parameters for errors. */
|
||||
|
||||
if (n <= 0 || m < n || ftol < 0. || xtol < 0. ||
|
||||
gtol < 0. || maxfev <= 0 || factor <= 0.) {
|
||||
gtol < 0. || maxfev <= 0 || factor <= 0.)
|
||||
goto L300;
|
||||
}
|
||||
|
||||
if (mode == 2)
|
||||
for (j = 0; j < n; ++j)
|
||||
if (diag[j] <= 0.) goto L300;
|
||||
@ -59,9 +59,8 @@ int ei_lmder(
|
||||
|
||||
iflag = Functor::f(x, fvec);
|
||||
nfev = 1;
|
||||
if (iflag < 0) {
|
||||
if (iflag < 0)
|
||||
goto L300;
|
||||
}
|
||||
fnorm = fvec.stableNorm();
|
||||
|
||||
/* initialize levenberg-marquardt parameter and iteration counter. */
|
||||
@ -71,283 +70,218 @@ int ei_lmder(
|
||||
|
||||
/* beginning of the outer loop. */
|
||||
|
||||
L30:
|
||||
while(true) {
|
||||
|
||||
/* calculate the jacobian matrix. */
|
||||
/* calculate the jacobian matrix. */
|
||||
|
||||
iflag = Functor::df(x, fjac);
|
||||
++njev;
|
||||
if (iflag < 0) {
|
||||
goto L300;
|
||||
}
|
||||
iflag = Functor::df(x, fjac);
|
||||
++njev;
|
||||
if (iflag < 0)
|
||||
break;
|
||||
|
||||
/* if requested, call Functor::f to enable printing of iterates. */
|
||||
/* if requested, call Functor::f to enable printing of iterates. */
|
||||
|
||||
if (nprint <= 0) {
|
||||
goto L40;
|
||||
}
|
||||
iflag = 0;
|
||||
if ((iter - 1) % nprint == 0) {
|
||||
iflag = Functor::debug(x, fvec, fjac);
|
||||
}
|
||||
if (iflag < 0) {
|
||||
goto L300;
|
||||
}
|
||||
L40:
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
|
||||
ei_qrfac<Scalar>(m, n, fjac.data(), fjac.rows(), true, ipvt.data(), n, wa1.data(), wa2.data());
|
||||
ipvt.cwise()-=1; // qrfac() creates ipvt with fortran convetion (1->n), convert it to c (0->n-1)
|
||||
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
|
||||
if (iter != 1) {
|
||||
goto L80;
|
||||
}
|
||||
if (mode == 2) {
|
||||
goto L60;
|
||||
}
|
||||
for (j = 0; j < n; ++j) {
|
||||
diag[j] = wa2[j];
|
||||
if (wa2[j] == 0.) {
|
||||
diag[j] = 1.;
|
||||
if (nprint > 0) {
|
||||
iflag = 0;
|
||||
if ((iter - 1) % nprint == 0)
|
||||
iflag = Functor::debug(x, fvec, fjac);
|
||||
if (iflag < 0)
|
||||
break;
|
||||
}
|
||||
/* L50: */
|
||||
}
|
||||
L60:
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
|
||||
wa3 = diag.cwise() * x;
|
||||
xnorm = wa3.stableNorm();
|
||||
delta = factor * xnorm;
|
||||
if (delta == 0.) {
|
||||
delta = factor;
|
||||
}
|
||||
L80:
|
||||
ei_qrfac<Scalar>(m, n, fjac.data(), fjac.rows(), true, ipvt.data(), n, wa1.data(), wa2.data());
|
||||
ipvt.cwise()-=1; // qrfac() creates ipvt with fortran convetion (1->n), convert it to c (0->n-1)
|
||||
|
||||
/* form (q transpose)*fvec and store the first n components in */
|
||||
/* qtf. */
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
|
||||
wa4 = fvec;
|
||||
for (j = 0; j < n; ++j) {
|
||||
if (fjac(j,j) == 0.) {
|
||||
goto L120;
|
||||
if (iter == 1) {
|
||||
if (mode != 2)
|
||||
for (j = 0; j < n; ++j) {
|
||||
diag[j] = wa2[j];
|
||||
if (wa2[j] == 0.)
|
||||
diag[j] = 1.;
|
||||
}
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
wa3 = diag.cwise() * x;
|
||||
xnorm = wa3.stableNorm();
|
||||
delta = factor * xnorm;
|
||||
if (delta == 0.)
|
||||
delta = factor;
|
||||
}
|
||||
sum = 0.;
|
||||
for (i = j; i < m; ++i) {
|
||||
sum += fjac(i,j) * wa4[i];
|
||||
/* L100: */
|
||||
|
||||
/* form (q transpose)*fvec and store the first n components in */
|
||||
/* qtf. */
|
||||
|
||||
wa4 = fvec;
|
||||
for (j = 0; j < n; ++j) {
|
||||
if (fjac(j,j) != 0.) {
|
||||
sum = 0.;
|
||||
for (i = j; i < m; ++i)
|
||||
sum += fjac(i,j) * wa4[i];
|
||||
temp = -sum / fjac(j,j);
|
||||
for (i = j; i < m; ++i)
|
||||
wa4[i] += fjac(i,j) * temp;
|
||||
}
|
||||
fjac(j,j) = wa1[j];
|
||||
qtf[j] = wa4[j];
|
||||
}
|
||||
temp = -sum / fjac(j,j);
|
||||
for (i = j; i < m; ++i) {
|
||||
wa4[i] += fjac(i,j) * temp;
|
||||
/* L110: */
|
||||
|
||||
/* compute the norm of the scaled gradient. */
|
||||
|
||||
gnorm = 0.;
|
||||
if (fnorm != 0.)
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = ipvt[j];
|
||||
if (wa2[l] != 0.) {
|
||||
sum = 0.;
|
||||
for (i = 0; i <= j; ++i)
|
||||
sum += fjac(i,j) * (qtf[i] / fnorm);
|
||||
/* Computing MAX */
|
||||
gnorm = std::max(gnorm, ei_abs(sum / wa2[l]));
|
||||
}
|
||||
}
|
||||
|
||||
/* test for convergence of the gradient norm. */
|
||||
|
||||
if (gnorm <= gtol) {
|
||||
info = 4;
|
||||
}
|
||||
L120:
|
||||
fjac(j,j) = wa1[j];
|
||||
qtf[j] = wa4[j];
|
||||
/* L130: */
|
||||
if (info != 0)
|
||||
break;
|
||||
|
||||
/* rescale if necessary. */
|
||||
|
||||
if (mode != 2) /* Computing MAX */
|
||||
diag = diag.cwise().max(wa2);
|
||||
|
||||
/* beginning of the inner loop. */
|
||||
do {
|
||||
/* determine the levenberg-marquardt parameter. */
|
||||
|
||||
ei_lmpar<Scalar>(fjac, ipvt, diag, qtf, delta, par, wa1, wa2);
|
||||
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
|
||||
wa1 = -wa1;
|
||||
wa2 = x + wa1;
|
||||
wa3 = diag.cwise() * wa1;
|
||||
pnorm = wa3.stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
|
||||
if (iter == 1) {
|
||||
delta = std::min(delta,pnorm);
|
||||
}
|
||||
|
||||
/* evaluate the function at x + p and calculate its norm. */
|
||||
|
||||
iflag = Functor::f(wa2, wa4);
|
||||
++nfev;
|
||||
if (iflag < 0)
|
||||
goto L300;
|
||||
fnorm1 = wa4.stableNorm();
|
||||
|
||||
/* compute the scaled actual reduction. */
|
||||
|
||||
actred = -1.;
|
||||
if (Scalar(.1) * fnorm1 < fnorm) /* Computing 2nd power */
|
||||
actred = 1. - ei_abs2(fnorm1 / fnorm);
|
||||
|
||||
/* compute the scaled predicted reduction and */
|
||||
/* the scaled directional derivative. */
|
||||
|
||||
wa3.fill(0.);
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = ipvt[j];
|
||||
temp = wa1[l];
|
||||
for (i = 0; i <= j; ++i) {
|
||||
wa3[i] += fjac(i,j) * temp;
|
||||
}
|
||||
}
|
||||
temp1 = ei_abs2(wa3.stableNorm() / fnorm);
|
||||
temp2 = ei_abs2(ei_sqrt(par) * pnorm / fnorm);
|
||||
/* Computing 2nd power */
|
||||
prered = temp1 + temp2 / Scalar(.5);
|
||||
dirder = -(temp1 + temp2);
|
||||
|
||||
/* compute the ratio of the actual to the predicted */
|
||||
/* reduction. */
|
||||
|
||||
ratio = 0.;
|
||||
if (prered != 0.)
|
||||
ratio = actred / prered;
|
||||
|
||||
/* update the step bound. */
|
||||
|
||||
if (ratio <= Scalar(.25)) {
|
||||
if (actred >= 0.)
|
||||
temp = Scalar(.5);
|
||||
if (actred < 0.)
|
||||
temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
|
||||
if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
|
||||
temp = Scalar(.1);
|
||||
/* Computing MIN */
|
||||
delta = temp * std::min(delta, pnorm / Scalar(.1));
|
||||
par /= temp;
|
||||
}
|
||||
else {
|
||||
if (!(par != 0. && ratio < Scalar(.75))) {
|
||||
delta = pnorm / Scalar(.5);
|
||||
par = Scalar(.5) * par;
|
||||
}
|
||||
}
|
||||
|
||||
/* test for successful iteration. */
|
||||
|
||||
if (ratio >= Scalar(1e-4)) {
|
||||
/* successful iteration. update x, fvec, and their norms. */
|
||||
x = wa2;
|
||||
wa2 = diag.cwise() * x;
|
||||
fvec = wa4;
|
||||
xnorm = wa2.stableNorm();
|
||||
fnorm = fnorm1;
|
||||
++iter;
|
||||
}
|
||||
|
||||
/* tests for convergence. */
|
||||
|
||||
if (ei_abs(actred) <= ftol && prered <= ftol && Scalar(.5) * ratio <= 1.)
|
||||
info = 1;
|
||||
if (delta <= xtol * xnorm)
|
||||
info = 2;
|
||||
if (ei_abs(actred) <= ftol && prered <= ftol && Scalar(.5) * ratio <= 1. && info == 2)
|
||||
info = 3;
|
||||
if (info != 0)
|
||||
goto L300;
|
||||
|
||||
/* tests for termination and stringent tolerances. */
|
||||
|
||||
if (nfev >= maxfev)
|
||||
info = 5;
|
||||
if (ei_abs(actred) <= epsilon<Scalar>() && prered <= epsilon<Scalar>() && Scalar(.5) * ratio <= 1.)
|
||||
info = 6;
|
||||
if (delta <= epsilon<Scalar>() * xnorm)
|
||||
info = 7;
|
||||
if (gnorm <= epsilon<Scalar>())
|
||||
info = 8;
|
||||
if (info != 0)
|
||||
goto L300;
|
||||
/* end of the inner loop. repeat if iteration unsuccessful. */
|
||||
} while (ratio < Scalar(1e-4));
|
||||
/* end of the outer loop. */
|
||||
}
|
||||
|
||||
/* compute the norm of the scaled gradient. */
|
||||
|
||||
gnorm = 0.;
|
||||
if (fnorm == 0.) {
|
||||
goto L170;
|
||||
}
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = ipvt[j];
|
||||
if (wa2[l] != 0.) {
|
||||
sum = 0.;
|
||||
for (i = 0; i <= j; ++i)
|
||||
sum += fjac(i,j) * (qtf[i] / fnorm);
|
||||
/* Computing MAX */
|
||||
gnorm = std::max(gnorm, ei_abs(sum / wa2[l]));
|
||||
}
|
||||
}
|
||||
L170:
|
||||
|
||||
/* test for convergence of the gradient norm. */
|
||||
|
||||
if (gnorm <= gtol) {
|
||||
info = 4;
|
||||
}
|
||||
if (info != 0) {
|
||||
goto L300;
|
||||
}
|
||||
|
||||
/* rescale if necessary. */
|
||||
|
||||
if (mode == 2) {
|
||||
goto L190;
|
||||
}
|
||||
/* Computing MAX */
|
||||
diag = diag.cwise().max(wa2);
|
||||
L190:
|
||||
|
||||
/* beginning of the inner loop. */
|
||||
|
||||
L200:
|
||||
|
||||
/* determine the levenberg-marquardt parameter. */
|
||||
|
||||
ei_lmpar<Scalar>(fjac, ipvt, diag, qtf, delta, par, wa1, wa2);
|
||||
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
|
||||
wa1 = -wa1;
|
||||
wa2 = x + wa1;
|
||||
wa3 = diag.cwise() * wa1;
|
||||
pnorm = wa3.stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
|
||||
if (iter == 1) {
|
||||
delta = std::min(delta,pnorm);
|
||||
}
|
||||
|
||||
/* evaluate the function at x + p and calculate its norm. */
|
||||
|
||||
iflag = Functor::f(wa2, wa4);
|
||||
++nfev;
|
||||
if (iflag < 0) {
|
||||
goto L300;
|
||||
}
|
||||
fnorm1 = wa4.stableNorm();
|
||||
|
||||
/* compute the scaled actual reduction. */
|
||||
|
||||
actred = -1.;
|
||||
if (Scalar(.1) * fnorm1 < fnorm) /* Computing 2nd power */
|
||||
actred = 1. - ei_abs2(fnorm1 / fnorm);
|
||||
|
||||
/* compute the scaled predicted reduction and */
|
||||
/* the scaled directional derivative. */
|
||||
|
||||
wa3.fill(0.);
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = ipvt[j];
|
||||
temp = wa1[l];
|
||||
for (i = 0; i <= j; ++i) {
|
||||
wa3[i] += fjac(i,j) * temp;
|
||||
/* L220: */
|
||||
}
|
||||
/* L230: */
|
||||
}
|
||||
temp1 = ei_abs2(wa3.stableNorm() / fnorm);
|
||||
temp2 = ei_abs2(ei_sqrt(par) * pnorm / fnorm);
|
||||
/* Computing 2nd power */
|
||||
prered = temp1 + temp2 / Scalar(.5);
|
||||
dirder = -(temp1 + temp2);
|
||||
|
||||
/* compute the ratio of the actual to the predicted */
|
||||
/* reduction. */
|
||||
|
||||
ratio = 0.;
|
||||
if (prered != 0.) {
|
||||
ratio = actred / prered;
|
||||
}
|
||||
|
||||
/* update the step bound. */
|
||||
|
||||
if (ratio > Scalar(.25)) {
|
||||
goto L240;
|
||||
}
|
||||
if (actred >= 0.) {
|
||||
temp = Scalar(.5);
|
||||
}
|
||||
if (actred < 0.) {
|
||||
temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
|
||||
}
|
||||
if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
|
||||
temp = Scalar(.1);
|
||||
/* Computing MIN */
|
||||
delta = temp * std::min(delta, pnorm / Scalar(.1));
|
||||
par /= temp;
|
||||
goto L260;
|
||||
L240:
|
||||
if (par != 0. && ratio < Scalar(.75)) {
|
||||
goto L250;
|
||||
}
|
||||
delta = pnorm / Scalar(.5);
|
||||
par = Scalar(.5) * par;
|
||||
L250:
|
||||
L260:
|
||||
|
||||
/* test for successful iteration. */
|
||||
|
||||
if (ratio < Scalar(1e-4)) {
|
||||
goto L290;
|
||||
}
|
||||
|
||||
/* successful iteration. update x, fvec, and their norms. */
|
||||
|
||||
x = wa2;
|
||||
wa2 = diag.cwise() * x;
|
||||
fvec = wa4;
|
||||
xnorm = wa2.stableNorm();
|
||||
fnorm = fnorm1;
|
||||
++iter;
|
||||
L290:
|
||||
|
||||
/* tests for convergence. */
|
||||
|
||||
if (ei_abs(actred) <= ftol && prered <= ftol && Scalar(.5) * ratio <= 1.) {
|
||||
info = 1;
|
||||
}
|
||||
if (delta <= xtol * xnorm) {
|
||||
info = 2;
|
||||
}
|
||||
if (ei_abs(actred) <= ftol && prered <= ftol && Scalar(.5) * ratio <= 1. && info
|
||||
== 2) {
|
||||
info = 3;
|
||||
}
|
||||
if (info != 0) {
|
||||
goto L300;
|
||||
}
|
||||
|
||||
/* tests for termination and stringent tolerances. */
|
||||
|
||||
if (nfev >= maxfev) {
|
||||
info = 5;
|
||||
}
|
||||
if (ei_abs(actred) <= epsilon<Scalar>() && prered <= epsilon<Scalar>() && Scalar(.5) * ratio <= 1.) {
|
||||
info = 6;
|
||||
}
|
||||
if (delta <= epsilon<Scalar>() * xnorm) {
|
||||
info = 7;
|
||||
}
|
||||
if (gnorm <= epsilon<Scalar>()) {
|
||||
info = 8;
|
||||
}
|
||||
if (info != 0) {
|
||||
goto L300;
|
||||
}
|
||||
|
||||
/* end of the inner loop. repeat if iteration unsuccessful. */
|
||||
|
||||
if (ratio < Scalar(1e-4)) {
|
||||
goto L200;
|
||||
}
|
||||
|
||||
/* end of the outer loop. */
|
||||
|
||||
goto L30;
|
||||
L300:
|
||||
|
||||
/* termination, either normal or user imposed. */
|
||||
|
||||
if (iflag < 0) {
|
||||
if (iflag < 0)
|
||||
info = iflag;
|
||||
}
|
||||
iflag = 0;
|
||||
if (nprint > 0) {
|
||||
if (nprint > 0)
|
||||
iflag = Functor::debug(x, fvec, fjac);
|
||||
}
|
||||
return info;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user