mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Re-enable products with triangular views of sparse matrices: we simply have to treat them as a sparse matrix.
This commit is contained in:
parent
893bfcf95f
commit
d44d432baa
@ -247,7 +247,7 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
||||
inline const AdjointReturnType adjoint() const
|
||||
{ return AdjointReturnType(m_matrix.adjoint()); }
|
||||
|
||||
typedef TriangularView<Transpose<MatrixType>,TransposeMode> TransposeReturnType;
|
||||
typedef TriangularView<typename MatrixType::TransposeReturnType,TransposeMode> TransposeReturnType;
|
||||
/** \sa MatrixBase::transpose() */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline TransposeReturnType transpose()
|
||||
@ -255,11 +255,13 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
||||
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
|
||||
return TransposeReturnType(m_matrix.const_cast_derived().transpose());
|
||||
}
|
||||
|
||||
typedef TriangularView<const typename MatrixType::ConstTransposeReturnType,TransposeMode> ConstTransposeReturnType;
|
||||
/** \sa MatrixBase::transpose() const */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline const TransposeReturnType transpose() const
|
||||
inline const ConstTransposeReturnType transpose() const
|
||||
{
|
||||
return TransposeReturnType(m_matrix.transpose());
|
||||
return ConstTransposeReturnType(m_matrix.transpose());
|
||||
}
|
||||
|
||||
template<typename Other>
|
||||
|
@ -141,6 +141,8 @@ struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,C
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrixAux;
|
||||
typedef typename sparse_eval<ColMajorMatrixAux,ResultType::RowsAtCompileTime,ResultType::ColsAtCompileTime>::type ColMajorMatrix;
|
||||
|
||||
// If the result is tall and thin (in the extreme case a column vector)
|
||||
// then it is faster to sort the coefficients inplace instead of transposing twice.
|
||||
// FIXME, the following heuristic is probably not very good.
|
||||
if(lhs.rows()>=rhs.cols())
|
||||
{
|
||||
|
@ -146,6 +146,11 @@ struct generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType>
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct generic_product_impl<Lhs, Rhs, SparseTriangularShape, DenseShape, ProductType>
|
||||
: generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType>
|
||||
{};
|
||||
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType>
|
||||
{
|
||||
@ -158,12 +163,17 @@ struct generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType>
|
||||
RhsNested rhsNested(rhs);
|
||||
|
||||
dst.setZero();
|
||||
// transpoe everything
|
||||
// transpose everything
|
||||
Transpose<Dest> dstT(dst);
|
||||
internal::sparse_time_dense_product(rhsNested.transpose(), lhsNested.transpose(), dstT, typename Dest::Scalar(1));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct generic_product_impl<Lhs, Rhs, DenseShape, SparseTriangularShape, ProductType>
|
||||
: generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType>
|
||||
{};
|
||||
|
||||
template<typename LhsT, typename RhsT, bool NeedToTranspose>
|
||||
struct sparse_dense_outer_product_evaluator
|
||||
{
|
||||
|
@ -33,6 +33,7 @@ SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived> &other
|
||||
|
||||
namespace internal {
|
||||
|
||||
// sparse * sparse
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct generic_product_impl<Lhs, Rhs, SparseShape, SparseShape, ProductType>
|
||||
{
|
||||
@ -48,6 +49,18 @@ struct generic_product_impl<Lhs, Rhs, SparseShape, SparseShape, ProductType>
|
||||
}
|
||||
};
|
||||
|
||||
// sparse * sparse-triangular
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct generic_product_impl<Lhs, Rhs, SparseShape, SparseTriangularShape, ProductType>
|
||||
: public generic_product_impl<Lhs, Rhs, SparseShape, SparseShape, ProductType>
|
||||
{};
|
||||
|
||||
// sparse-triangular * sparse
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct generic_product_impl<Lhs, Rhs, SparseTriangularShape, SparseShape, ProductType>
|
||||
: public generic_product_impl<Lhs, Rhs, SparseShape, SparseShape, ProductType>
|
||||
{};
|
||||
|
||||
template<typename Lhs, typename Rhs, int Options>
|
||||
struct evaluator<SparseView<Product<Lhs, Rhs, Options> > >
|
||||
: public evaluator<typename Product<Lhs, Rhs, DefaultProduct>::PlainObject>::type
|
||||
|
@ -194,7 +194,7 @@ template<typename SparseMatrixType> void sparse_product()
|
||||
VERIFY_IS_APPROX(d3=d1*m2.transpose(), refM3=d1*refM2.transpose());
|
||||
}
|
||||
|
||||
// test self adjoint products
|
||||
// test self-adjoint and traingular-view products
|
||||
{
|
||||
DenseMatrix b = DenseMatrix::Random(rows, rows);
|
||||
DenseMatrix x = DenseMatrix::Random(rows, rows);
|
||||
@ -202,9 +202,12 @@ template<typename SparseMatrixType> void sparse_product()
|
||||
DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
|
||||
DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
|
||||
DenseMatrix refS = DenseMatrix::Zero(rows, rows);
|
||||
DenseMatrix refA = DenseMatrix::Zero(rows, rows);
|
||||
SparseMatrixType mUp(rows, rows);
|
||||
SparseMatrixType mLo(rows, rows);
|
||||
SparseMatrixType mS(rows, rows);
|
||||
SparseMatrixType mA(rows, rows);
|
||||
initSparse<Scalar>(density, refA, mA);
|
||||
do {
|
||||
initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
|
||||
} while (refUp.isZero());
|
||||
@ -224,19 +227,30 @@ template<typename SparseMatrixType> void sparse_product()
|
||||
VERIFY_IS_APPROX(mS, refS);
|
||||
VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
|
||||
|
||||
// sparse selfadjointView with dense matrices
|
||||
VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b);
|
||||
VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b);
|
||||
VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b);
|
||||
|
||||
// sparse selfadjointView * sparse
|
||||
// sparse selfadjointView with sparse matrices
|
||||
SparseMatrixType mSres(rows,rows);
|
||||
VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>()*mS,
|
||||
refX = refLo.template selfadjointView<Lower>()*refS);
|
||||
// sparse * sparse selfadjointview
|
||||
VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(),
|
||||
refX = refS * refLo.template selfadjointView<Lower>());
|
||||
|
||||
// sparse triangularView with dense matrices
|
||||
VERIFY_IS_APPROX(x=mA.template triangularView<Upper>()*b, refX=refA.template triangularView<Upper>()*b);
|
||||
VERIFY_IS_APPROX(x=mA.template triangularView<Lower>()*b, refX=refA.template triangularView<Lower>()*b);
|
||||
VERIFY_IS_APPROX(x=b*mA.template triangularView<Upper>(), refX=b*refA.template triangularView<Upper>());
|
||||
VERIFY_IS_APPROX(x=b*mA.template triangularView<Lower>(), refX=b*refA.template triangularView<Lower>());
|
||||
|
||||
// sparse triangularView with sparse matrices
|
||||
VERIFY_IS_APPROX(mSres = mA.template triangularView<Lower>()*mS, refX = refA.template triangularView<Lower>()*refS);
|
||||
VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Lower>(), refX = refS * refA.template triangularView<Lower>());
|
||||
VERIFY_IS_APPROX(mSres = mA.template triangularView<Upper>()*mS, refX = refA.template triangularView<Upper>()*refS);
|
||||
VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Upper>(), refX = refS * refA.template triangularView<Upper>());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// New test for Bug in SparseTimeDenseProduct
|
||||
|
Loading…
Reference in New Issue
Block a user