we were already aligning to 16 byte boundary fixed-size objects that are multiple of 16 bytes;

now we also align to 8byte boundary fixed-size objects that are multiple of 8 bytes.
That's only useful for now for double, not e.g. for Vector2f, but that didn't seem to hurt. Am I missing something? Do you prefer that we don't align Vector2f at all?
Also, improvements in test_unalignedassert.
This commit is contained in:
Benoit Jacob 2009-10-05 10:11:11 -04:00
parent a9a9ba8453
commit d41577819b
6 changed files with 108 additions and 80 deletions

View File

@ -29,32 +29,48 @@
struct ei_constructor_without_unaligned_array_assert {};
/** \internal
* Static array automatically aligned if the total byte size is a multiple of 16 and the matrix options require auto alignment
* Static array. If the MatrixOptions require auto-alignment, and the array will be automatically aligned:
* - to 16 bytes boundary, if the total size is a multiple of 16 bytes;
* - or else to 8 bytes boundary, if the total size is a multiple of 8 bytes.
*/
template <typename T, int Size, int MatrixOptions,
bool Align = (!(MatrixOptions&DontAlign)) && (((Size*sizeof(T))&0xf)==0)
> struct ei_matrix_array
{
EIGEN_ALIGN_128 T array[Size];
ei_matrix_array()
{
#ifndef EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT
ei_assert((reinterpret_cast<size_t>(array) & 0xf) == 0
&& "this assertion is explained here: http://eigen.tuxfamily.org/dox/UnalignedArrayAssert.html **** READ THIS WEB PAGE !!! ****");
#endif
}
ei_matrix_array(ei_constructor_without_unaligned_array_assert) {}
};
template <typename T, int Size, int MatrixOptions> struct ei_matrix_array<T,Size,MatrixOptions,false>
int Alignment = (MatrixOptions&DontAlign) ? 0
: (((Size*sizeof(T))%16)==0) ? 16
: (((Size*sizeof(T))%8)==0) ? 8
: 0 >
struct ei_matrix_array
{
T array[Size];
ei_matrix_array() {}
ei_matrix_array(ei_constructor_without_unaligned_array_assert) {}
};
#ifdef EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask)
#else
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
ei_assert((reinterpret_cast<size_t>(array) & sizemask) == 0 \
&& "this assertion is explained here: " \
"http://eigen.tuxfamily.org/dox/UnalignedArrayAssert.html" \
" **** READ THIS WEB PAGE !!! ****");
#endif
template <typename T, int Size, int MatrixOptions>
struct ei_matrix_array<T, Size, MatrixOptions, 16>
{
EIGEN_ALIGN16 T array[Size];
ei_matrix_array() { EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(0xf) }
ei_matrix_array(ei_constructor_without_unaligned_array_assert) {}
};
template <typename T, int Size, int MatrixOptions>
struct ei_matrix_array<T, Size, MatrixOptions, 8>
{
EIGEN_ALIGN8 T array[Size];
ei_matrix_array() { EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(0x7) }
ei_matrix_array(ei_constructor_without_unaligned_array_assert) {}
};
/** \internal
*
* \class ei_matrix_storage

View File

@ -265,14 +265,14 @@ template<> inline void ei_pstoreu(int* to , const v4i& from )
template<> inline float ei_pfirst(const v4f& a)
{
float EIGEN_ALIGN_128 af[4];
float EIGEN_ALIGN16 af[4];
vec_st(a, 0, af);
return af[0];
}
template<> inline int ei_pfirst(const v4i& a)
{
int EIGEN_ALIGN_128 ai[4];
int EIGEN_ALIGN16 ai[4];
vec_st(a, 0, ai);
return ai[0];
}
@ -373,7 +373,7 @@ inline float ei_predux_mul(const v4f& a)
inline int ei_predux_mul(const v4i& a)
{
EIGEN_ALIGN_128 int aux[4];
EIGEN_ALIGN16 int aux[4];
ei_pstore(aux, a);
return aux[0] * aux[1] * aux[2] * aux[3];
}

View File

@ -359,7 +359,7 @@ template<> EIGEN_STRONG_INLINE int ei_predux_mul<Packet4i>(const Packet4i& a)
// after some experiments, it is seems this is the fastest way to implement it
// for GCC (eg., reusing ei_pmul is very slow !)
// TODO try to call _mm_mul_epu32 directly
EIGEN_ALIGN_128 int aux[4];
EIGEN_ALIGN16 int aux[4];
ei_pstore(aux, a);
return (aux[0] * aux[1]) * (aux[2] * aux[3]);;
}
@ -378,7 +378,7 @@ template<> EIGEN_STRONG_INLINE int ei_predux_min<Packet4i>(const Packet4i& a)
{
// after some experiments, it is seems this is the fastest way to implement it
// for GCC (eg., it does not like using std::min after the ei_pstore !!)
EIGEN_ALIGN_128 int aux[4];
EIGEN_ALIGN16 int aux[4];
ei_pstore(aux, a);
register int aux0 = aux[0]<aux[1] ? aux[0] : aux[1];
register int aux2 = aux[2]<aux[3] ? aux[2] : aux[3];
@ -399,7 +399,7 @@ template<> EIGEN_STRONG_INLINE int ei_predux_max<Packet4i>(const Packet4i& a)
{
// after some experiments, it is seems this is the fastest way to implement it
// for GCC (eg., it does not like using std::min after the ei_pstore !!)
EIGEN_ALIGN_128 int aux[4];
EIGEN_ALIGN16 int aux[4];
ei_pstore(aux, a);
register int aux0 = aux[0]>aux[1] ? aux[0] : aux[1];
register int aux2 = aux[2]>aux[3] ? aux[2] : aux[3];

View File

@ -202,25 +202,29 @@ using Eigen::ei_cos;
#define EIGEN_ASM_COMMENT(X)
#endif
/* EIGEN_ALIGN_128 forces data to be 16-byte aligned, EVEN if vectorization (EIGEN_VECTORIZE) is disabled,
/* EIGEN_ALIGN_TO_BOUNDARY(n) forces data to be n-byte aligned. This is used to satisfy SIMD requirements.
* However, we do that EVEN if vectorization (EIGEN_VECTORIZE) is disabled,
* so that vectorization doesn't affect binary compatibility.
*
* If we made alignment depend on whether or not EIGEN_VECTORIZE is defined, it would be impossible to link
* vectorized and non-vectorized code.
*/
#if !EIGEN_ALIGN
#define EIGEN_ALIGN_128
#define EIGEN_ALIGN_TO_BOUNDARY(n)
#elif (defined __GNUC__)
#define EIGEN_ALIGN_128 __attribute__((aligned(16)))
#define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n)))
#elif (defined _MSC_VER)
#define EIGEN_ALIGN_128 __declspec(align(16))
#define EIGEN_ALIGN_TO_BOUNDARY(n) __declspec(align(n))
#elif (defined __SUNPRO_CC)
// FIXME not sure about this one:
#define EIGEN_ALIGN_128 __attribute__((aligned(16)))
#define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n)))
#else
#error Please tell me what is the equivalent of __attribute__((aligned(16))) for your compiler
#error Please tell me what is the equivalent of __attribute__((aligned(n))) for your compiler
#endif
#define EIGEN_ALIGN16 EIGEN_ALIGN_TO_BOUNDARY(16)
#define EIGEN_ALIGN8 EIGEN_ALIGN_TO_BOUNDARY(8)
#ifdef EIGEN_DONT_USE_RESTRICT_KEYWORD
#define EIGEN_RESTRICT
#endif

View File

@ -99,10 +99,10 @@ template<typename Scalar> void packetmath()
const int PacketSize = ei_packet_traits<Scalar>::size;
const int size = PacketSize*4;
EIGEN_ALIGN_128 Scalar data1[ei_packet_traits<Scalar>::size*4];
EIGEN_ALIGN_128 Scalar data2[ei_packet_traits<Scalar>::size*4];
EIGEN_ALIGN_128 Packet packets[PacketSize*2];
EIGEN_ALIGN_128 Scalar ref[ei_packet_traits<Scalar>::size*4];
EIGEN_ALIGN16 Scalar data1[ei_packet_traits<Scalar>::size*4];
EIGEN_ALIGN16 Scalar data2[ei_packet_traits<Scalar>::size*4];
EIGEN_ALIGN16 Packet packets[PacketSize*2];
EIGEN_ALIGN16 Scalar ref[ei_packet_traits<Scalar>::size*4];
for (int i=0; i<size; ++i)
{
data1[i] = ei_random<Scalar>();
@ -202,9 +202,9 @@ template<typename Scalar> void packetmath_real()
const int PacketSize = ei_packet_traits<Scalar>::size;
const int size = PacketSize*4;
EIGEN_ALIGN_128 Scalar data1[ei_packet_traits<Scalar>::size*4];
EIGEN_ALIGN_128 Scalar data2[ei_packet_traits<Scalar>::size*4];
EIGEN_ALIGN_128 Scalar ref[ei_packet_traits<Scalar>::size*4];
EIGEN_ALIGN16 Scalar data1[ei_packet_traits<Scalar>::size*4];
EIGEN_ALIGN16 Scalar data2[ei_packet_traits<Scalar>::size*4];
EIGEN_ALIGN16 Scalar ref[ei_packet_traits<Scalar>::size*4];
for (int i=0; i<size; ++i)
{

View File

@ -24,52 +24,38 @@
#include "main.h"
struct Good1
struct TestNew1
{
MatrixXd m; // good: m will allocate its own array, taking care of alignment.
Good1() : m(20,20) {}
TestNew1() : m(20,20) {}
};
struct Good2
struct TestNew2
{
Matrix3d m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be aligned
Matrix3d m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be 16-byte aligned,
// 8-byte alignment is good enough here, which we'll get automatically
};
struct Good3
struct TestNew3
{
Vector2f m; // good: same reason
Vector2f m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be 16-byte aligned
};
struct Bad4
{
Vector2d m; // bad: sizeof(m)%16==0 so alignment is required
};
struct Bad5
{
Matrix<float, 2, 6> m; // bad: same reason
};
struct Bad6
{
Matrix<double, 3, 4> m; // bad: same reason
};
struct Good7
struct TestNew4
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
Vector2d m;
float f; // make the struct have sizeof%16!=0 to make it a little more tricky when we allow an array of 2 such objects
};
struct Good8
struct TestNew5
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
float f; // try the f at first -- the EIGEN_ALIGN_128 attribute of m should make that still work
float f; // try the f at first -- the EIGEN_ALIGN16 attribute of m should make that still work
Matrix4f m;
};
struct Good9
struct TestNew6
{
Matrix<float,2,2,DontAlign> m; // good: no alignment requested
float f;
@ -94,34 +80,56 @@ void check_unalignedassert_good()
#if EIGEN_ALIGN
template<typename T>
void check_unalignedassert_bad()
void construct_at_boundary(int boundary)
{
float buf[sizeof(T)+16];
float *unaligned = buf;
while((reinterpret_cast<size_t>(unaligned)&0xf)==0) ++unaligned; // make sure unaligned is really unaligned
T *x = ::new(static_cast<void*>(unaligned)) T;
char buf[sizeof(T)+256];
size_t _buf = reinterpret_cast<size_t>(buf);
_buf += (16 - (_buf % 16)); // make 16-byte aligned
_buf += boundary; // make exact boundary-aligned
T *x = ::new(reinterpret_cast<void*>(_buf)) T;
x->~T();
}
#endif
void unalignedassert()
{
check_unalignedassert_good<Good1>();
check_unalignedassert_good<Good2>();
check_unalignedassert_good<Good3>();
#if EIGEN_ALIGN
VERIFY_RAISES_ASSERT(check_unalignedassert_bad<Bad4>());
VERIFY_RAISES_ASSERT(check_unalignedassert_bad<Bad5>());
VERIFY_RAISES_ASSERT(check_unalignedassert_bad<Bad6>());
#endif
construct_at_boundary<Vector2f>(8);
construct_at_boundary<Vector3f>(4);
construct_at_boundary<Vector4f>(16);
construct_at_boundary<Matrix2f>(16);
construct_at_boundary<Matrix3f>(4);
construct_at_boundary<Matrix4f>(16);
construct_at_boundary<Vector2d>(16);
construct_at_boundary<Vector3d>(8);
construct_at_boundary<Vector4d>(16);
construct_at_boundary<Matrix2d>(16);
construct_at_boundary<Matrix3d>(8);
construct_at_boundary<Matrix4d>(16);
check_unalignedassert_good<TestNew1>();
check_unalignedassert_good<TestNew2>();
check_unalignedassert_good<TestNew3>();
check_unalignedassert_good<Good7>();
check_unalignedassert_good<Good8>();
check_unalignedassert_good<Good9>();
check_unalignedassert_good<TestNew4>();
check_unalignedassert_good<TestNew5>();
check_unalignedassert_good<TestNew6>();
check_unalignedassert_good<Depends<true> >();
#if EIGEN_ALIGN
VERIFY_RAISES_ASSERT(check_unalignedassert_bad<Depends<false> >());
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector2f>(4));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4f>(4));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4f>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix2f>(4));
VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix2f>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix4f>(4));
VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix4f>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector2d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector3d>(4));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix2d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix3d>(4));
VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix4d>(8));
#endif
}