diff --git a/Eigen/src/Core/MathFunctions.h b/Eigen/src/Core/MathFunctions.h index 05e913f2f..5b57c2ff2 100644 --- a/Eigen/src/Core/MathFunctions.h +++ b/Eigen/src/Core/MathFunctions.h @@ -519,6 +519,53 @@ inline EIGEN_MATHFUNC_RETVAL(atan2, Scalar) atan2(const Scalar& x, const Scalar& return EIGEN_MATHFUNC_IMPL(atan2, Scalar)::run(x, y); } +/**************************************************************************** +* Implementation of atanh2 * +****************************************************************************/ + +template +struct atanh2_default_impl +{ + typedef Scalar retval; + typedef typename NumTraits::Real RealScalar; + static inline Scalar run(const Scalar& x, const Scalar& y) + { + using std::abs; + using std::log; + using std::sqrt; + Scalar z = x / y; + if (abs(z) > sqrt(NumTraits::epsilon())) + return RealScalar(0.5) * log((y + x) / (y - x)); + else + return z + z*z*z / RealScalar(3); + } +}; + +template +struct atanh2_default_impl +{ + static inline Scalar run(const Scalar&, const Scalar&) + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) + return Scalar(0); + } +}; + +template +struct atanh2_impl : atanh2_default_impl::IsInteger> {}; + +template +struct atanh2_retval +{ + typedef Scalar type; +}; + +template +inline EIGEN_MATHFUNC_RETVAL(atanh2, Scalar) atanh2(const Scalar& x, const Scalar& y) +{ + return EIGEN_MATHFUNC_IMPL(atanh2, Scalar)::run(x, y); +} + /**************************************************************************** * Implementation of pow * ****************************************************************************/ diff --git a/doc/I02_HiPerformance.dox b/doc/I02_HiPerformance.dox index d7a02fb5c..ab6cdfd44 100644 --- a/doc/I02_HiPerformance.dox +++ b/doc/I02_HiPerformance.dox @@ -79,7 +79,7 @@ temp = m2 * m3; m1 += temp.adjoint(); \endcode \code m1.noalias() += m3.adjoint() -* * m2.adjoint(); \endcode +* * m2.adjoint(); \endcode This is because the product expression has the EvalBeforeNesting bit which enforces the evaluation of the product by the Tranpose expression. diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h b/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h index 18bcf3d0d..e1e5b770c 100644 --- a/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +++ b/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h @@ -51,7 +51,6 @@ private: void compute2x2(const MatrixType& A, MatrixType& result); void computeBig(const MatrixType& A, MatrixType& result); - static Scalar atanh2(Scalar y, Scalar x); int getPadeDegree(float normTminusI); int getPadeDegree(double normTminusI); int getPadeDegree(long double normTminusI); @@ -93,20 +92,6 @@ MatrixType MatrixLogarithmAtomic::compute(const MatrixType& A) return result; } -/** \brief Compute atanh (inverse hyperbolic tangent) for \f$ y / x \f$. */ -template -typename MatrixType::Scalar MatrixLogarithmAtomic::atanh2(Scalar y, Scalar x) -{ - using std::abs; - using std::sqrt; - - Scalar z = y / x; - if (abs(z) > sqrt(NumTraits::epsilon())) - return Scalar(0.5) * log((x + y) / (x - y)); - else - return z + z*z*z / Scalar(3); -} - /** \brief Compute logarithm of 2x2 triangular matrix. */ template void MatrixLogarithmAtomic::compute2x2(const MatrixType& A, MatrixType& result) @@ -131,7 +116,7 @@ void MatrixLogarithmAtomic::compute2x2(const MatrixType& A, MatrixTy // computation in previous branch is inaccurate if A(1,1) \approx A(0,0) int unwindingNumber = static_cast(ceil((imag(logA11 - logA00) - M_PI) / (2*M_PI))); Scalar y = A(1,1) - A(0,0), x = A(1,1) + A(0,0); - result(0,1) = A(0,1) * (Scalar(2) * atanh2(y,x) + Scalar(0,2*M_PI*unwindingNumber)) / y; + result(0,1) = A(0,1) * (Scalar(2) * internal::atanh2(y,x) + Scalar(0,2*M_PI*unwindingNumber)) / y; } } diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h b/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h index 2a46d2cc0..7238501ed 100644 --- a/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +++ b/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h @@ -111,9 +111,6 @@ class MatrixPower */ void getFractionalExponent(); - /** \brief Compute atanh (inverse hyperbolic tangent) for \f$ y / x \f$. */ - static ComplexScalar atanh2(const ComplexScalar& y, const ComplexScalar& x); - /** \brief Compute power of 2x2 triangular matrix. */ void compute2x2(RealScalar p); @@ -223,7 +220,7 @@ void MatrixPower::computeChainProduct(ResultType& result int cost = computeCost(p); if (m_pInt < RealScalar(0)) { - if (p * m_dimb <= cost * m_dimA) { + if (p * m_dimb <= cost * m_dimA && m_dimA > 2) { partialPivLuSolve(result, p); return; } else { @@ -296,21 +293,6 @@ void MatrixPower::getFractionalExponent() } } -template -std::complex -MatrixPower::atanh2(const ComplexScalar& y, const ComplexScalar& x) -{ - using std::abs; - using std::log; - using std::sqrt; - const ComplexScalar z = y / x; - - if (abs(z) > sqrt(NumTraits::epsilon())) - return RealScalar(0.5) * log((x + y) / (x - y)); - else - return z + z*z*z / RealScalar(3); -} - template void MatrixPower::compute2x2(RealScalar p) { @@ -337,7 +319,7 @@ void MatrixPower::compute2x2(RealScalar p) } else { // computation in previous branch is inaccurate if abs(m_T(j,j)) \approx abs(m_T(i,i)) unwindingNumber = ceil((imag(m_logTdiag[j] - m_logTdiag[i]) - M_PI) / (2 * M_PI)); - w = atanh2(m_T(j,j) - m_T(i,i), m_T(j,j) + m_T(i,i)) + ComplexScalar(0, M_PI * unwindingNumber); + w = internal::atanh2(m_T(j,j) - m_T(i,i), m_T(j,j) + m_T(i,i)) + ComplexScalar(0, M_PI * unwindingNumber); m_fT(i,j) = m_T(i,j) * RealScalar(2) * exp(RealScalar(0.5) * p * (m_logTdiag[j] + m_logTdiag[i])) * sinh(p * w) / (m_T(j,j) - m_T(i,i)); }