Merged in ezhulenev/eigen-01 (pull request PR-723)

Add block evaluation to TensorReshaping/TensorCasting/TensorPadding/TensorSelect

Approved-by: Rasmus Larsen <rmlarsen@google.com>
This commit is contained in:
Rasmus Larsen 2019-10-04 17:19:13 +00:00
commit d1dd51cb5f
9 changed files with 860 additions and 163 deletions

View File

@ -11,6 +11,11 @@
namespace Eigen {
namespace internal {
// -------------------------------------------------------------------------- //
// Forward declarations for templates defined below.
template <typename Scalar, typename IndexType, int NumDims, int Layout>
class TensorBlockIOV2;
// -------------------------------------------------------------------------- //
// Helper function to compute strides for densely stored buffer of given
// dimensions.
@ -18,7 +23,7 @@ namespace internal {
// TODO(ezhulenev): We compute strides 1000 times in different evaluators, use
// this function instead everywhere.
template <int Layout, typename IndexType, int NumDims>
EIGEN_STRONG_INLINE DSizes<IndexType, NumDims> strides(
EIGEN_ALWAYS_INLINE DSizes<IndexType, NumDims> strides(
const DSizes<IndexType, NumDims>& dimensions) {
DSizes<IndexType, NumDims> strides;
if (NumDims == 0) return strides;
@ -40,6 +45,14 @@ EIGEN_STRONG_INLINE DSizes<IndexType, NumDims> strides(
return strides;
}
#if EIGEN_HAS_CXX11
template <int Layout, std::ptrdiff_t... Indices>
EIGEN_STRONG_INLINE DSizes<std::ptrdiff_t, sizeof...(Indices)> strides(
const Sizes<Indices...>& sizes) {
return strides<Layout>(DSizes<std::ptrdiff_t, sizeof...(Indices)>(sizes));
}
#endif
// -------------------------------------------------------------------------- //
// TensorBlockDescriptor specifies a block offset within a tensor and the block
// sizes along each of the tensor dimensions.
@ -155,6 +168,14 @@ class TensorBlockDescriptor {
DestinationBuffer(dst_base, m_dimensions, dst_strides, total_dst_bytes);
}
template <typename Scalar, typename DstStridesIndexType>
void AddDestinationBuffer(
Scalar* dst_base, const DSizes<DstStridesIndexType, NumDims>& dst_strides,
size_t total_dst_bytes) {
// DSizes constructor will do index type promotion if it's safe.
AddDestinationBuffer(dst_base, Dimensions(dst_strides), total_dst_bytes);
}
TensorBlockDescriptor& DropDestinationBuffer() {
m_destination.m_data = NULL;
return *this;
@ -333,10 +354,11 @@ class TensorMaterializedBlock {
typedef internal::TensorBlockKind::TensorBlockKind TensorBlockKind;
#endif
public:
typedef DSizes<IndexType, NumDims> Dimensions;
typedef TensorMap<const Tensor<Scalar, NumDims, Layout> > XprType;
TensorMaterializedBlock(TensorBlockKind kind, const Scalar* data,
const DSizes<IndexType, NumDims>& dimensions)
const Dimensions& dimensions)
: m_kind(kind),
m_data(data),
m_dimensions(dimensions),
@ -352,18 +374,84 @@ class TensorMaterializedBlock {
// properly for TensorMap.
const XprType& expr() const { return m_expr; }
const Scalar* data() const { return m_data; }
void cleanup() {}
typedef internal::TensorBlockDescriptor<NumDims, IndexType> TensorBlockDesc;
// Creates a materialized block for the given descriptor from a memory buffer.
template <typename DataDimensions, typename TensorBlockScratch>
EIGEN_STRONG_INLINE static TensorMaterializedBlock materialize(
const Scalar* data, const DataDimensions& data_dims,
TensorBlockDesc& desc, TensorBlockScratch& scratch) {
eigen_assert(array_size<DataDimensions>::value == desc.dimensions().size());
// If a tensor block dimensions covers a contiguous block of the underlying
// memory, we can skip block buffer memory allocation, and construct a block
// from existing `data` memory buffer.
//
// Example: (RowMajor layout)
// data_dims: [11, 12, 13, 14]
// desc.dimensions(): [1, 1, 3, 14]
//
// In this case we can construct a TensorBlock starting at
// `data + desc.offset()`, with a `desc.dimensions()` block sizes.
static const bool is_col_major = Layout == ColMajor;
// Find out how many inner dimensions have a matching size.
int num_matching_inner_dims = 0;
for (int i = 0; i < NumDims; ++i) {
int dim = is_col_major ? i : NumDims - i - 1;
if (data_dims[dim] != desc.dimensions()[dim]) break;
++num_matching_inner_dims;
}
// All the outer dimensions must be of size `1`, except a single dimension
// before the matching inner dimension (`3` in the example above).
bool can_use_direct_access = true;
for (int i = num_matching_inner_dims + 1; i < NumDims; ++i) {
int dim = is_col_major ? i : NumDims - i - 1;
if (desc.dimension(dim) != 1) {
can_use_direct_access = false;
break;
}
}
if (can_use_direct_access) {
const Scalar* block_start = data + desc.offset();
return TensorMaterializedBlock(internal::TensorBlockKind::kView, block_start,
desc.dimensions());
} else {
void* mem = scratch.allocate(desc.size() * sizeof(Scalar));
Scalar* block_buffer = static_cast<Scalar*>(mem);
typedef internal::TensorBlockIOV2<Scalar, IndexType, NumDims, Layout>
TensorBlockIO;
typedef typename TensorBlockIO::Dst TensorBlockIODst;
typedef typename TensorBlockIO::Src TensorBlockIOSrc;
TensorBlockIOSrc src(internal::strides<Layout>(Dimensions(data_dims)),
data, desc.offset());
TensorBlockIODst dst(desc.dimensions(),
internal::strides<Layout>(desc.dimensions()),
block_buffer);
TensorBlockIO::Copy(dst, src);
return TensorMaterializedBlock(internal::TensorBlockKind::kMaterializedInScratch,
block_buffer, desc.dimensions());
}
}
private:
TensorBlockKind m_kind;
const Scalar* m_data;
DSizes<IndexType, NumDims> m_dimensions;
Dimensions m_dimensions;
XprType m_expr;
};
// -------------------------------------------------------------------------- //
// TensorCwiseUnaryBlock is a lazy tensor expression that applies UnaryOp
// TensorCwiseUnaryBlock is a lazy tensor expression block that applies UnaryOp
// functor to the blocks produced by the underlying Tensor expression.
template <typename UnaryOp, typename ArgTensorBlock>
@ -398,7 +486,7 @@ class TensorCwiseUnaryBlock {
};
// -------------------------------------------------------------------------- //
// TensorCwiseUnaryBlock is a lazy tensor expression that applies BinaryOp
// TensorCwiseUnaryBlock is a lazy tensor expression block that applies BinaryOp
// functor to the blocks produced by the underlying Tensor expression.
template <typename BinaryOp, typename LhsTensorBlock, typename RhsTensorBlock>
@ -446,6 +534,96 @@ class TensorCwiseBinaryBlock {
BinaryOp m_functor;
};
// -------------------------------------------------------------------------- //
// TensorUnaryExprBlock is a lazy tensor expression block that can construct
// an arbitrary tensor expression from a block of the underlying type (this is a
// generalization of the TensorCwiseUnaryBlock for arbitrary expressions).
template <typename BlockFactory, typename ArgTensorBlock>
class TensorUnaryExprBlock {
#if !EIGEN_HAS_CXX11
typedef internal::TensorBlockKind::TensorBlockKind TensorBlockKind;
#endif
typedef typename ArgTensorBlock::XprType ArgXprType;
static const bool NoArgBlockAccess = internal::is_void<ArgXprType>::value;
public:
typedef typename conditional<
NoArgBlockAccess, void,
typename BlockFactory::template XprType<ArgXprType>::type>::type XprType;
typedef typename XprScalar<XprType>::type Scalar;
TensorUnaryExprBlock(const ArgTensorBlock& arg_block,
const BlockFactory& factory)
: m_arg_block(arg_block), m_factory(factory) {}
TensorBlockKind kind() const { return internal::TensorBlockKind::kExpr; }
XprType expr() const { return m_factory.expr(m_arg_block.expr()); }
const Scalar* data() const { return NULL; }
void cleanup() { m_arg_block.cleanup(); }
private:
ArgTensorBlock m_arg_block;
BlockFactory m_factory;
};
// -------------------------------------------------------------------------- //
// TensorTernaryExprBlock is a lazy tensor expression block that can construct
// an arbitrary tensor expression from three blocks of the underlying type.
template <typename BlockFactory, typename Arg1TensorBlock,
typename Arg2TensorBlock, typename Arg3TensorBlock>
class TensorTernaryExprBlock {
#if !EIGEN_HAS_CXX11
typedef internal::TensorBlockKind::TensorBlockKind TensorBlockKind;
#endif
typedef typename Arg1TensorBlock::XprType Arg1XprType;
typedef typename Arg2TensorBlock::XprType Arg2XprType;
typedef typename Arg3TensorBlock::XprType Arg3XprType;
static const bool NoArgBlockAccess = internal::is_void<Arg1XprType>::value ||
internal::is_void<Arg2XprType>::value ||
internal::is_void<Arg3XprType>::value;
public:
typedef typename conditional<
NoArgBlockAccess, void,
typename BlockFactory::template XprType<Arg1XprType, Arg2XprType,
Arg3XprType>::type>::type XprType;
typedef typename XprScalar<XprType>::type Scalar;
TensorTernaryExprBlock(const Arg1TensorBlock& arg1_block,
const Arg2TensorBlock& arg2_block,
const Arg3TensorBlock& arg3_block,
const BlockFactory& factory)
: m_arg1_block(arg1_block),
m_arg2_block(arg2_block),
m_arg3_block(arg3_block),
m_factory(factory) {}
TensorBlockKind kind() const { return internal::TensorBlockKind::kExpr; }
XprType expr() const {
return m_factory.expr(m_arg1_block.expr(), m_arg2_block.expr(),
m_arg3_block.expr());
}
const Scalar* data() const { return NULL; }
void cleanup() {
m_arg1_block.cleanup();
m_arg2_block.cleanup();
m_arg3_block.cleanup();
}
private:
Arg1TensorBlock m_arg1_block;
Arg2TensorBlock m_arg2_block;
Arg3TensorBlock m_arg3_block;
BlockFactory m_factory;
};
// -------------------------------------------------------------------------- //
// StridedLinearBufferCopy provides a method to copy data between two linear
// buffers with different strides, with optimized paths for scatter/gather.
@ -547,7 +725,13 @@ class StridedLinearBufferCopy {
} else if (kind == FillLinear) {
// Fill `dst` with value at `*src`.
eigen_assert(src_stride == 0 && dst_stride == 1);
const IndexType unrolled_size = count - 4 * PacketSize;
Packet p = pload1<Packet>(src);
for (; i <= unrolled_size; i += 4 * PacketSize) {
for (int j = 0; j < 4; ++j) {
pstoreu<Scalar, Packet>(dst + i + j * PacketSize, p);
}
}
for (; i <= vectorized_size; i += PacketSize) {
pstoreu<Scalar, Packet>(dst + i, p);
}
@ -809,15 +993,15 @@ class TensorBlockIOV2 {
// -------------------------------------------------------------------------- //
// TensorBlockAssignment assigns a block expression of type `TensorBlockExpr` to
// a Tensor block defined by `desc`, backed by a memory buffer at `dst` address.
// a Tensor block defined by `desc`, backed by a memory buffer at `target`.
//
// Currently there is no way to write from a Tensor expression to a block of
// memory, if dimensions are reordered. If you need to do that, you should
// materialize a Tensor block expression into a memory buffer, and then use
// TensorBlockIO to copy data between two memory buffers with a custom
// `dst->src` dimension map (see definition above).
// `target->src` dimension map (see definition above).
//
// Also currently the innermost dimension of `dst` must have a stride '1'
// Also currently the innermost dimension of `target` must have a stride '1'
// (contiguous in memory). This restriction could be lifted with a `pscatter`,
// but in practice it's never needed, and there is a similar TensorBlockIO
// workaround for that.
@ -842,18 +1026,18 @@ class TensorBlockAssignment {
template <bool Vectorizable, typename Evaluator>
struct InnerDimAssign {
EIGEN_ALWAYS_INLINE static void Run(Scalar* dst, IndexType count,
EIGEN_ALWAYS_INLINE static void Run(Scalar* target, IndexType count,
const Evaluator& eval,
IndexType eval_offset) {
for (IndexType i = 0; i < count; ++i) {
dst[i] = eval.coeff(eval_offset + i);
target[i] = eval.coeff(eval_offset + i);
}
}
};
template <typename Evaluator>
struct InnerDimAssign<true, Evaluator> {
EIGEN_ALWAYS_INLINE static void Run(Scalar* dst, IndexType count,
EIGEN_ALWAYS_INLINE static void Run(Scalar* target, IndexType count,
const Evaluator& eval,
IndexType eval_offset) {
typedef typename packet_traits<Scalar>::type Packet;
@ -866,26 +1050,29 @@ class TensorBlockAssignment {
for (int j = 0; j < 4; ++j) {
const IndexType idx = eval_offset + i + j * PacketSize;
Packet p = eval.template packet<Unaligned>(idx);
pstoreu<Scalar>(dst + i + j * PacketSize, p);
pstoreu<Scalar>(target + i + j * PacketSize, p);
}
}
for (; i <= vectorized_size; i += PacketSize) {
Packet p = eval.template packet<Unaligned>(eval_offset + i);
pstoreu<Scalar>(dst + i, p);
pstoreu<Scalar>(target + i, p);
}
for (; i < count; ++i) {
dst[i] = eval.coeff(eval_offset + i);
target[i] = eval.coeff(eval_offset + i);
}
}
};
public:
struct Dst {
Dst(const Dimensions& dst_dims, const Dimensions& dst_strides, Scalar* dst,
IndexType dst_offset = 0)
: dims(dst_dims), strides(dst_strides), data(dst), offset(dst_offset) {}
struct Target {
Target(const Dimensions& target_dims, const Dimensions& target_strides,
Scalar* target_data, IndexType target_offset = 0)
: dims(target_dims),
strides(target_strides),
data(target_data),
offset(target_offset) {}
Dimensions dims;
Dimensions strides;
@ -893,34 +1080,50 @@ class TensorBlockAssignment {
IndexType offset;
};
static Target target(const Dimensions& target_dims,
const Dimensions& target_strides, Scalar* target_data,
IndexType target_offset = 0) {
return Target(target_dims, target_strides, target_data, target_offset);
}
template <typename TargetDimsIndexType, typename TargetStridesIndexType>
static Target target(
const DSizes<TargetDimsIndexType, NumDims>& target_dims,
const DSizes<TargetStridesIndexType, NumDims>& target_strides,
Scalar* target_data, IndexType target_offset = 0) {
// DSizes constructor will do index type promotion if it's safe.
return Target(Dimensions(target_dims), Dimensions(target_strides),
target_data, target_offset);
}
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
const Dst& dst, const TensorBlockExpr& expr) {
const Target& target, const TensorBlockExpr& expr) {
// Prepare evaluator for block expression.
DefaultDevice default_device;
TensorBlockEvaluator eval(expr, default_device);
// Tensor block expression dimension should match destination dimensions.
eigen_assert(dimensions_match(dst.dims, eval.dimensions()));
eigen_assert(dimensions_match(target.dims, eval.dimensions()));
static const int Layout = TensorBlockEvaluator::Layout;
static const bool is_col_major = Layout == ColMajor;
// Initialize output inner dimension size based on a layout.
const IndexType output_size = NumDims == 0 ? 1 : dst.dims.TotalSize();
const IndexType output_size = NumDims == 0 ? 1 : target.dims.TotalSize();
const int inner_dim_idx = is_col_major ? 0 : NumDims - 1;
IndexType output_inner_dim_size = dst.dims[inner_dim_idx];
IndexType output_inner_dim_size = target.dims[inner_dim_idx];
// Dst inner dimension stride must be '1'.
eigen_assert(dst.strides[inner_dim_idx] == 1);
// Target inner dimension stride must be '1'.
eigen_assert(target.strides[inner_dim_idx] == 1);
// Squeeze multiple inner dims into one if they are contiguous in `dst`.
// Squeeze multiple inner dims into one if they are contiguous in `target`.
IndexType num_squeezed_dims = 0;
for (Index i = 1; i < NumDims; ++i) {
const Index dim = is_col_major ? i : NumDims - i - 1;
const IndexType dst_stride = dst.strides[dim];
const IndexType target_stride = target.strides[dim];
if (output_inner_dim_size == dst_stride) {
output_inner_dim_size *= dst.dims[dim];
if (output_inner_dim_size == target_stride) {
output_inner_dim_size *= target.dims[dim];
num_squeezed_dims++;
} else {
break;
@ -936,22 +1139,22 @@ class TensorBlockAssignment {
const Index dim = is_col_major ? i + 1 : NumDims - i - 2;
it[idx].count = 0;
it[idx].size = dst.dims[dim];
it[idx].output_stride = dst.strides[dim];
it[idx].size = target.dims[dim];
it[idx].output_stride = target.strides[dim];
it[idx].output_span = it[i].output_stride * (it[i].size - 1);
idx++;
}
// We read block expression from the beginning, and start writing data to
// `dst` at given offset.
// `target` at given offset.
IndexType input_offset = 0;
IndexType output_offset = dst.offset;
IndexType output_offset = target.offset;
// Iterate copying data from `eval` to `dst`.
// Iterate copying data from `eval` to `target`.
for (IndexType i = 0; i < output_size; i += output_inner_dim_size) {
// Assign to `dst` at current offset.
// Assign to `target` at current offset.
InnerDimAssign<Vectorizable && TensorBlockEvaluator::PacketAccess,
TensorBlockEvaluator>::Run(dst.data + output_offset,
TensorBlockEvaluator>::Run(target.data + output_offset,
output_inner_dim_size, eval,
input_offset);

View File

@ -1247,10 +1247,10 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
ScalarNoConst, NumDims, typename ArgTensorBlock::XprType, Index>
TensorBlockAssignment;
typename TensorBlockAssignment::Dst assignment_dst(
input_block_sizes, input_block_strides, *materialized_input);
TensorBlockAssignment::Run(assignment_dst, input_block.expr());
TensorBlockAssignment::Run(
TensorBlockAssignment::target(input_block_sizes, input_block_strides,
*materialized_input),
input_block.expr());
input_buffer = *materialized_input;
}

View File

@ -294,23 +294,45 @@ struct TensorEvaluator<const TensorConversionOp<TargetType, ArgType>, Device>
typedef typename Storage::Type EvaluatorPointerType;
enum {
IsAligned = false,
PacketAccess =
IsAligned = false,
PacketAccess =
#ifndef EIGEN_USE_SYCL
true,
true,
#else
TensorEvaluator<ArgType, Device>::PacketAccess &
internal::type_casting_traits<SrcType, TargetType>::VectorizedCast,
TensorEvaluator<ArgType, Device>::PacketAccess &
internal::type_casting_traits<SrcType, TargetType>::VectorizedCast,
#endif
BlockAccess = false,
BlockAccessV2 = false,
PreferBlockAccess = false,
Layout = TensorEvaluator<ArgType, Device>::Layout,
RawAccess = false
BlockAccess = false,
BlockAccessV2 = TensorEvaluator<ArgType, Device>::BlockAccessV2,
PreferBlockAccess = TensorEvaluator<ArgType, Device>::PreferBlockAccess,
Layout = TensorEvaluator<ArgType, Device>::Layout,
RawAccess = false
};
static const int NumDims = internal::array_size<Dimensions>::value;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlockV2;
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
typedef typename TensorEvaluator<const ArgType, Device>::TensorBlockV2
ArgTensorBlock;
struct TensorConversionOpBlockFactory {
template <typename ArgXprType>
struct XprType {
typedef TensorConversionOp<TargetType, const ArgXprType> type;
};
template <typename ArgXprType>
typename XprType<ArgXprType>::type expr(const ArgXprType& expr) const {
return typename XprType<ArgXprType>::type(expr);
}
};
typedef internal::TensorUnaryExprBlock<TensorConversionOpBlockFactory,
ArgTensorBlock>
TensorBlockV2;
//===--------------------------------------------------------------------===//
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
@ -376,6 +398,17 @@ struct TensorEvaluator<const TensorConversionOp<TargetType, ArgType>, Device>
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void getResourceRequirements(
std::vector<internal::TensorOpResourceRequirements>* resources) const {
m_impl.getResourceRequirements(resources);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlockV2
blockV2(TensorBlockDesc& desc, TensorBlockScratch& scratch) const {
return TensorBlockV2(m_impl.blockV2(desc, scratch),
TensorConversionOpBlockFactory());
}
EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
/// required by sycl in order to extract the sycl accessor

View File

@ -176,11 +176,12 @@ struct TensorEvaluator
typedef internal::TensorBlockAssignment<Scalar, NumCoords, TensorBlockExpr,
Index>
TensorBlockAssign;
typename TensorBlockAssign::Dst dst(desc.dimensions(),
internal::strides<Layout>(m_dims),
m_data, desc.offset());
TensorBlockAssign::Run(dst, block.expr());
TensorBlockAssign::Run(
TensorBlockAssign::target(desc.dimensions(),
internal::strides<Layout>(m_dims), m_data,
desc.offset()),
block.expr());
}
EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_data; }
@ -349,62 +350,7 @@ struct TensorEvaluator<const Derived, Device>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlockV2
blockV2(TensorBlockDesc& desc, TensorBlockScratch& scratch) const {
assert(m_data != NULL);
// TODO(ezhulenev): Move it to TensorBlockV2 and reuse in TensorForcedEval.
// If a tensor block descriptor covers a contiguous block of the underlying
// memory, we can skip block buffer memory allocation, and construct a block
// from existing `m_data` memory buffer.
//
// Example: (RowMajor layout)
// m_dims: [11, 12, 13, 14]
// desc.dimensions(): [1, 1, 3, 14]
//
// In this case we can construct a TensorBlock starting at
// `m_data + desc.offset()`, with a `desc.dimensions()` block sizes.
static const bool
is_col_major = static_cast<int>(Layout) == static_cast<int>(ColMajor);
// Find out how many inner dimensions have a matching size.
int num_matching_inner_dims = 0;
for (int i = 0; i < NumCoords; ++i) {
int dim = is_col_major ? i : NumCoords - i - 1;
if (m_dims[dim] != desc.dimensions()[dim]) break;
++num_matching_inner_dims;
}
// All the outer dimensions must be of size `1`, except a single dimension
// before the matching inner dimension (`3` in the example above).
bool can_use_direct_access = true;
for (int i = num_matching_inner_dims + 1; i < NumCoords; ++i) {
int dim = is_col_major ? i : NumCoords - i - 1;
if (desc.dimension(dim) != 1) {
can_use_direct_access = false;
break;
}
}
if (can_use_direct_access) {
EvaluatorPointerType block_start = m_data + desc.offset();
return TensorBlockV2(internal::TensorBlockKind::kView, block_start,
desc.dimensions());
} else {
void* mem = scratch.allocate(desc.size() * sizeof(Scalar));
ScalarNoConst* block_buffer = static_cast<ScalarNoConst*>(mem);
TensorBlockIOSrc src(internal::strides<Layout>(m_dims), m_data,
desc.offset());
TensorBlockIODst dst(desc.dimensions(),
internal::strides<Layout>(desc.dimensions()),
block_buffer);
TensorBlockIO::Copy(dst, src);
return TensorBlockV2(internal::TensorBlockKind::kMaterializedInScratch,
block_buffer, desc.dimensions());
}
return TensorBlockV2::materialize(m_data, m_dims, desc, scratch);
}
EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_data; }
@ -923,15 +869,21 @@ struct TensorEvaluator<const TensorSelectOp<IfArgType, ThenArgType, ElseArgType>
typedef typename XprType::Scalar Scalar;
enum {
IsAligned = TensorEvaluator<ThenArgType, Device>::IsAligned & TensorEvaluator<ElseArgType, Device>::IsAligned,
PacketAccess = TensorEvaluator<ThenArgType, Device>::PacketAccess & TensorEvaluator<ElseArgType, Device>::PacketAccess &
PacketType<Scalar, Device>::HasBlend,
BlockAccess = false,
BlockAccessV2 = false,
PreferBlockAccess = false,
Layout = TensorEvaluator<IfArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = false
IsAligned = TensorEvaluator<ThenArgType, Device>::IsAligned &
TensorEvaluator<ElseArgType, Device>::IsAligned,
PacketAccess = TensorEvaluator<ThenArgType, Device>::PacketAccess &
TensorEvaluator<ElseArgType, Device>::PacketAccess &
PacketType<Scalar, Device>::HasBlend,
BlockAccess = false,
BlockAccessV2 = TensorEvaluator<IfArgType, Device>::BlockAccessV2 &&
TensorEvaluator<ThenArgType, Device>::BlockAccessV2 &&
TensorEvaluator<ElseArgType, Device>::BlockAccessV2,
PreferBlockAccess = TensorEvaluator<IfArgType, Device>::PreferBlockAccess ||
TensorEvaluator<ThenArgType, Device>::PreferBlockAccess ||
TensorEvaluator<ElseArgType, Device>::PreferBlockAccess,
Layout = TensorEvaluator<IfArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = false
};
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device)
@ -953,8 +905,36 @@ struct TensorEvaluator<const TensorSelectOp<IfArgType, ThenArgType, ElseArgType>
typedef StorageMemory<CoeffReturnType, Device> Storage;
typedef typename Storage::Type EvaluatorPointerType;
static const int NumDims = internal::array_size<Dimensions>::value;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlockV2;
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
typedef typename TensorEvaluator<const IfArgType, Device>::TensorBlockV2
IfArgTensorBlock;
typedef typename TensorEvaluator<const ThenArgType, Device>::TensorBlockV2
ThenArgTensorBlock;
typedef typename TensorEvaluator<const ElseArgType, Device>::TensorBlockV2
ElseArgTensorBlock;
struct TensorSelectOpBlockFactory {
template <typename IfArgXprType, typename ThenArgXprType, typename ElseArgXprType>
struct XprType {
typedef TensorSelectOp<const IfArgXprType, const ThenArgXprType, const ElseArgXprType> type;
};
template <typename IfArgXprType, typename ThenArgXprType, typename ElseArgXprType>
typename XprType<IfArgXprType, ThenArgXprType, ElseArgXprType>::type expr(
const IfArgXprType& if_expr, const ThenArgXprType& then_expr, const ElseArgXprType& else_expr) const {
return typename XprType<IfArgXprType, ThenArgXprType, ElseArgXprType>::type(if_expr, then_expr, else_expr);
}
};
typedef internal::TensorTernaryExprBlock<TensorSelectOpBlockFactory,
IfArgTensorBlock, ThenArgTensorBlock,
ElseArgTensorBlock>
TensorBlockV2;
//===--------------------------------------------------------------------===//
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
@ -1000,6 +980,24 @@ struct TensorEvaluator<const TensorSelectOp<IfArgType, ThenArgType, ElseArgType>
.cwiseMax(m_elseImpl.costPerCoeff(vectorized));
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void getResourceRequirements(
std::vector<internal::TensorOpResourceRequirements>* resources) const {
m_condImpl.getResourceRequirements(resources);
m_thenImpl.getResourceRequirements(resources);
m_elseImpl.getResourceRequirements(resources);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlockV2
blockV2(TensorBlockDesc& desc, TensorBlockScratch& scratch) const {
// It's unsafe to pass destination buffer to underlying expressions, because
// output might be aliased with one of the inputs.
desc.DropDestinationBuffer();
return TensorBlockV2(
m_condImpl.blockV2(desc, scratch), m_thenImpl.blockV2(desc, scratch),
m_elseImpl.blockV2(desc, scratch), TensorSelectOpBlockFactory());
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return NULL; }
#ifdef EIGEN_USE_SYCL

View File

@ -324,6 +324,17 @@ struct IndexList : internal::IndexTuple<FirstType, OtherTypes...> {
}
};
template <typename FirstType, typename... OtherTypes>
std::ostream& operator<<(std::ostream& os,
const IndexList<FirstType, OtherTypes...>& dims) {
os << "[";
for (size_t i = 0; i < 1 + sizeof...(OtherTypes); ++i) {
if (i > 0) os << ", ";
os << dims[i];
}
os << "]";
return os;
}
template<typename FirstType, typename... OtherTypes>
constexpr IndexList<FirstType, OtherTypes...> make_index_list(FirstType val1, OtherTypes... other_vals) {

View File

@ -113,6 +113,25 @@ struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
static const int NumOutputDims = internal::array_size<Dimensions>::value;
static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
enum ReshapingKind {
// We do not use layout information to determine reshaping kind.
// Depending on the layout `N` can be inner or outer dimension.
OneByN = 0, // expr.reshape(1, N)
NByOne = 1, // expr.reshape(N, 1)
Runtime = 2 // Reshape dimensions are dynamic (specified at runtime).
};
// clang-format off
static const ReshapingKind kind =
#if defined(EIGEN_HAS_INDEX_LIST)
(NumOutputDims == 2 && internal::index_statically_eq<NewDimensions>(/*index=*/0, /*value=*/1)) ? OneByN
: (NumOutputDims == 2 && internal::index_statically_eq<NewDimensions>(/*index=*/1, /*value=*/1)) ? NByOne
: Runtime;
#else
Runtime;
#endif
// clang-format on
enum {
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
@ -121,8 +140,12 @@ struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess &&
TensorEvaluator<ArgType, Device>::RawAccess &&
NumInputDims > 0 && NumOutputDims > 0,
BlockAccessV2 = false,
PreferBlockAccess = true,
// For trivial reshapes with raw access to underlying data we will provide
// zero overhead block access.
// TODO(ezhulenev): Consider adding block access without raw access?
BlockAccessV2 = TensorEvaluator<ArgType, Device>::RawAccess &&
NumInputDims > 0 && NumOutputDims > 0,
PreferBlockAccess = false,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = TensorEvaluator<ArgType, Device>::RawAccess
@ -139,7 +162,13 @@ struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
OutputTensorBlockReader;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlockV2;
typedef internal::TensorBlockDescriptor<NumOutputDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
typedef
typename internal::TensorMaterializedBlock<ScalarNoConst, NumOutputDims,
Layout, Index>
TensorBlockV2;
//===--------------------------------------------------------------------===//
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
@ -199,8 +228,9 @@ struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void getResourceRequirements(
std::vector<internal::TensorOpResourceRequirements>* resources) const {
m_impl.getResourceRequirements(resources);
std::vector<internal::TensorOpResourceRequirements>*) const {
// TODO(ezhulenev): If we'll ever support block evaluation without raw
// access we'll need to get requirements from `m_impl`.
}
// required in block(OutputTensorBlock* output_block) const
@ -334,6 +364,26 @@ struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlockV2
blockV2(TensorBlockDesc& desc, TensorBlockScratch& scratch) const {
eigen_assert(m_impl.data() != NULL);
eigen_assert((kind == Runtime) ||
(kind == OneByN && desc.dimensions()[0] == 1) ||
(kind == NByOne && desc.dimensions()[1] == 1));
if (kind == OneByN || kind == NByOne) {
// We can guarantee at compile time that block is just a contiguous slice
// of the underlying expression memory buffer.
return TensorBlockV2(internal::TensorBlockKind::kView,
m_impl.data() + desc.offset(), desc.dimensions());
} else {
// This will do additional runtime checks, and in the end it might be also
// a view, or it might be a block materialized in the temporary buffer.
return TensorBlockV2::materialize(m_impl.data(), m_dimensions, desc,
scratch);
}
}
EIGEN_DEVICE_FUNC typename Storage::Type data() const {
return constCast(m_impl.data());
}
@ -365,14 +415,14 @@ template<typename NewDimensions, typename ArgType, typename Device>
typedef NewDimensions Dimensions;
enum {
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
BlockAccess = false,
BlockAccessV2 = false,
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
BlockAccess = false,
BlockAccessV2 = TensorEvaluator<ArgType, Device>::RawAccess,
PreferBlockAccess = false,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = TensorEvaluator<ArgType, Device>::RawAccess
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = false, // to be implemented
RawAccess = TensorEvaluator<ArgType, Device>::RawAccess
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
@ -385,18 +435,37 @@ template<typename NewDimensions, typename ArgType, typename Device>
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlockV2;
typedef internal::TensorBlockDescriptor<TensorEvaluator::NumOutputDims, Index>
TensorBlockDesc;
//===--------------------------------------------------------------------===//
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
{
return this->m_impl.coeffRef(index);
}
template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketReturnType& x)
{
this->m_impl.template writePacket<StoreMode>(index, x);
}
template <typename TensorBlock>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlockV2(
const TensorBlockDesc& desc, const TensorBlock& block) {
assert(this->m_impl.data() != NULL);
typedef typename TensorBlock::XprType TensorBlockExpr;
typedef internal::TensorBlockAssignment<
Scalar, TensorEvaluator::NumOutputDims, TensorBlockExpr, Index>
TensorBlockAssign;
TensorBlockAssign::Run(
TensorBlockAssign::target(desc.dimensions(),
internal::strides<Layout>(this->dimensions()),
this->m_impl.data(), desc.offset()),
block.expr());
}
};

View File

@ -96,22 +96,29 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
typedef typename Storage::Type EvaluatorPointerType;
enum {
IsAligned = true,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
BlockAccess = false,
BlockAccessV2 = false,
PreferBlockAccess = false,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = true,
RawAccess = false
IsAligned = true,
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
BlockAccess = false,
BlockAccessV2 = TensorEvaluator<ArgType, Device>::RawAccess,
PreferBlockAccess = true,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = true,
RawAccess = false
};
typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlockV2;
typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumDims,
Layout, Index>
TensorBlockV2;
//===--------------------------------------------------------------------===//
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_padding(op.padding()), m_paddingValue(op.padding_value())
: m_impl(op.expression(), device), m_padding(op.padding()), m_paddingValue(op.padding_value()), m_device(device)
{
// The padding op doesn't change the rank of the tensor. Directly padding a scalar would lead
// to a vector, which doesn't make sense. Instead one should reshape the scalar into a vector
@ -212,6 +219,214 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
return cost;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void getResourceRequirements(
std::vector<internal::TensorOpResourceRequirements>* resources) const {
Eigen::Index block_total_size_max = numext::maxi<Eigen::Index>(
1, m_device.lastLevelCacheSize() / sizeof(Scalar));
resources->push_back(internal::TensorOpResourceRequirements(
internal::kSkewedInnerDims, block_total_size_max));
m_impl.getResourceRequirements(resources);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlockV2
blockV2(TensorBlockDesc& desc, TensorBlockScratch& scratch) const {
eigen_assert(m_impl.data() != NULL);
// Check if we can reuse `desc` destination, or allocate new scratch buffer.
ScalarNoConst* materialized_output =
desc.template destination<ScalarNoConst, Layout>();
bool materialized_in_output;
if (materialized_output != NULL) {
desc.DropDestinationBuffer();
materialized_in_output = true;
} else {
const size_t materialized_output_size = desc.size() * sizeof(Scalar);
void* output_scratch_mem = scratch.allocate(materialized_output_size);
materialized_output = static_cast<ScalarNoConst*>(output_scratch_mem);
materialized_in_output = false;
}
static const bool IsColMajor = Layout == static_cast<int>(ColMajor);
Index offset = desc.offset();
// Compute offsets in the output tensor corresponding to the desc.offset().
DSizes<Index, NumDims> output_offsets;
for (int i = NumDims - 1; i > 0; --i) {
const int dim = IsColMajor ? i : NumDims - i - 1;
const int stride_dim = IsColMajor ? dim : dim + 1;
output_offsets[dim] = offset / m_outputStrides[stride_dim];
offset -= output_offsets[dim] * m_outputStrides[stride_dim];
}
output_offsets[IsColMajor ? 0 : NumDims - 1] = offset;
// Offsets in the input corresponding to output offsets.
DSizes<Index, NumDims> input_offsets = output_offsets;
for (int i = 0; i < NumDims; ++i) {
const int dim = IsColMajor ? i : NumDims - i - 1;
input_offsets[dim] = input_offsets[dim] - m_padding[dim].first;
}
// Compute offset in the input buffer (at this point it might be illegal and
// point outside of the input buffer, because we don't check for negative
// offsets, it will be autocorrected in the block iteration loop below).
Index input_offset = 0;
for (int i = 0; i < NumDims; ++i) {
const int dim = IsColMajor ? i : NumDims - i - 1;
input_offset += input_offsets[dim] * m_inputStrides[dim];
}
// Destination buffer and scratch buffer both indexed from 0 and have the
// same dimensions as the requested block (for destination buffer this
// property is guaranteed by `desc.destination()`).
Index output_offset = 0;
const DSizes<Index, NumDims> output_strides =
internal::strides<Layout>(desc.dimensions());
// NOTE(ezhulenev): We initialize bock iteration state for `NumDims - 1`
// dimensions, skipping innermost dimension. In theory it should be possible
// to squeeze matching innermost dimensions, however in practice that did
// not show any improvements in benchmarks. Also in practice first outer
// dimension usually has padding, and will prevent squeezing.
// Initialize output block iterator state. Dimension in this array are
// always in inner_most -> outer_most order (col major layout).
array<BlockIteratorState, NumDims - 1> it;
for (int i = 0; i < NumDims - 1; ++i) {
const int dim = IsColMajor ? i + 1 : NumDims - i - 2;
it[i].count = 0;
it[i].size = desc.dimension(dim);
it[i].input_stride = m_inputStrides[dim];
it[i].input_span = it[i].input_stride * (it[i].size - 1);
it[i].output_stride = output_strides[dim];
it[i].output_span = it[i].output_stride * (it[i].size - 1);
}
const int inner_dim_idx = IsColMajor ? 0 : NumDims - 1;
// Total output size.
const Index output_size = desc.size();
// We will fill inner dimension of this size in the output. It might be
// larger than the inner dimension in the input, so we might have to pad
// before/after we copy values from the input inner dimension.
const Index output_inner_dim_size = desc.dimension(inner_dim_idx);
// How many values to fill with padding BEFORE reading from the input inner
// dimension.
const Index output_inner_pad_before_size =
input_offsets[inner_dim_idx] < 0
? numext::mini(numext::abs(input_offsets[inner_dim_idx]),
output_inner_dim_size)
: 0;
// How many values we can actually copy from the input inner dimension.
const Index output_inner_copy_size = numext::mini(
// Want to copy from input.
(output_inner_dim_size - output_inner_pad_before_size),
// Can copy from input.
(static_cast<Index>(m_impl.dimensions()[inner_dim_idx]) -
numext::maxi(input_offsets[inner_dim_idx], Index(0))));
// How many values to fill with padding AFTER reading from the input inner
// dimension.
const Index output_inner_pad_after_size =
(output_inner_dim_size - output_inner_copy_size -
output_inner_pad_before_size);
// Sanity check, sum of all sizes must be equal to the output size.
eigen_assert(output_inner_dim_size ==
(output_inner_pad_before_size + output_inner_copy_size +
output_inner_pad_after_size));
// Keep track of current coordinates and padding in the output.
DSizes<Index, NumDims> output_coord = output_offsets;
DSizes<Index, NumDims> output_padded;
for (int i = 0; i < NumDims; ++i) {
const int dim = IsColMajor ? i : NumDims - i - 1;
output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim);
}
typedef internal::StridedLinearBufferCopy<ScalarNoConst, Index> LinCopy;
// Iterate copying data from `m_impl.data()` to the output buffer.
for (Index size = 0; size < output_size; size += output_inner_dim_size) {
// Detect if we are in the padded region (exclude innermost dimension).
bool is_padded = false;
for (int j = 1; j < NumDims; ++j) {
const int dim = IsColMajor ? j : NumDims - j - 1;
is_padded = output_padded[dim];
if (is_padded) break;
}
if (is_padded) {
// Fill with padding value.
LinCopy::template Run<LinCopy::Kind::FillLinear>(
typename LinCopy::Dst(output_offset, 1, materialized_output),
typename LinCopy::Src(0, 0, &m_paddingValue),
output_inner_dim_size);
} else {
{ // Fill with padding before copying from input inner dimension.
const Index out = output_offset;
LinCopy::template Run<LinCopy::Kind::FillLinear>(
typename LinCopy::Dst(out, 1, materialized_output),
typename LinCopy::Src(0, 0, &m_paddingValue),
output_inner_pad_before_size);
}
{ // Copy data from input inner dimension.
const Index out = output_offset + output_inner_pad_before_size;
const Index in = input_offset + output_inner_pad_before_size;
LinCopy::template Run<LinCopy::Kind::Linear>(
typename LinCopy::Dst(out, 1, materialized_output),
typename LinCopy::Src(in, 1, m_impl.data()),
output_inner_copy_size);
}
{ // Fill with padding after copying from input inner dimension.
const Index out = output_offset + output_inner_pad_before_size +
output_inner_copy_size;
LinCopy::template Run<LinCopy::Kind::FillLinear>(
typename LinCopy::Dst(out, 1, materialized_output),
typename LinCopy::Src(0, 0, &m_paddingValue),
output_inner_pad_after_size);
}
}
for (int j = 0; j < NumDims - 1; ++j) {
const int dim = IsColMajor ? j + 1 : NumDims - j - 2;
if (++it[j].count < it[j].size) {
input_offset += it[j].input_stride;
output_offset += it[j].output_stride;
output_coord[dim] += 1;
output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim);
break;
}
it[j].count = 0;
input_offset -= it[j].input_span;
output_offset -= it[j].output_span;
output_coord[dim] -= it[j].size - 1;
output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim);
}
}
return TensorBlockV2(materialized_in_output
? internal::TensorBlockKind::kMaterializedInOutput
: internal::TensorBlockKind::kMaterializedInScratch,
materialized_output,
desc.dimensions());
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return NULL; }
#ifdef EIGEN_USE_SYCL
@ -222,6 +437,23 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
#endif
private:
struct BlockIteratorState {
BlockIteratorState()
: count(0),
size(0),
input_stride(0),
input_span(0),
output_stride(0),
output_span(0) {}
Index count;
Index size;
Index input_stride;
Index input_span;
Index output_stride;
Index output_span;
};
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isPaddingAtIndexForDim(
Index index, int dim_index) const {
#if defined(EIGEN_HAS_INDEX_LIST)
@ -410,6 +642,8 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
PaddingDimensions m_padding;
Scalar m_paddingValue;
const Device EIGEN_DEVICE_REF m_device;
};

View File

@ -104,6 +104,17 @@ static TensorBlockParams<NumDims> FixedSizeBlock(DSizes<Index, NumDims> dims) {
return {offsets, dims, TensorBlockDescriptor<NumDims, Index>(0, dims)};
}
inline Eigen::IndexList<Index, Eigen::type2index<1>> NByOne(Index n) {
Eigen::IndexList<Index, Eigen::type2index<1>> ret;
ret.set(0, n);
return ret;
}
inline Eigen::IndexList<Eigen::type2index<1>, Index> OneByM(Index m) {
Eigen::IndexList<Eigen::type2index<1>, Index> ret;
ret.set(1, m);
return ret;
}
// -------------------------------------------------------------------------- //
// Verify that block expression evaluation produces the same result as a
// TensorSliceOp (reading a tensor block is same to taking a tensor slice).
@ -174,7 +185,7 @@ static void test_eval_tensor_block() {
// Identity tensor expression transformation.
VerifyBlockEvaluator<T, NumDims, Layout>(
input, [&dims]() { return RandomBlock<Layout>(dims, 10, 20); });
input, [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
}
template <typename T, int NumDims, int Layout>
@ -184,7 +195,7 @@ static void test_eval_tensor_unary_expr_block() {
input.setRandom();
VerifyBlockEvaluator<T, NumDims, Layout>(
input.square(), [&dims]() { return RandomBlock<Layout>(dims, 10, 20); });
input.square(), [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
}
template <typename T, int NumDims, int Layout>
@ -195,7 +206,7 @@ static void test_eval_tensor_binary_expr_block() {
rhs.setRandom();
VerifyBlockEvaluator<T, NumDims, Layout>(
lhs + rhs, [&dims]() { return RandomBlock<Layout>(dims, 10, 20); });
lhs + rhs, [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
}
template <typename T, int NumDims, int Layout>
@ -207,7 +218,7 @@ static void test_eval_tensor_binary_with_unary_expr_block() {
VerifyBlockEvaluator<T, NumDims, Layout>(
(lhs.square() + rhs.square()).sqrt(),
[&dims]() { return RandomBlock<Layout>(dims, 10, 20); });
[&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
}
template <typename T, int NumDims, int Layout>
@ -236,6 +247,114 @@ static void test_eval_tensor_broadcast() {
[&bcasted_dims]() { return SkewedInnerBlock<Layout>(bcasted_dims); });
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_reshape() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(1, 10);
DSizes<Index, NumDims> shuffled = dims;
std::shuffle(&shuffled[0], &shuffled[NumDims - 1], std::mt19937(g_seed));
Tensor<T, NumDims, Layout> input(dims);
input.setRandom();
VerifyBlockEvaluator<T, NumDims, Layout>(
input.reshape(shuffled),
[&shuffled]() { return RandomBlock<Layout>(shuffled, 1, 10); });
VerifyBlockEvaluator<T, NumDims, Layout>(
input.reshape(shuffled),
[&shuffled]() { return SkewedInnerBlock<Layout>(shuffled); });
}
template <typename T, int Layout>
static void test_eval_tensor_reshape_with_bcast() {
Index dim = internal::random<Index>(1, 100);
Tensor<T, 2, Layout> lhs(1, dim);
Tensor<T, 2, Layout> rhs(dim, 1);
lhs.setRandom();
rhs.setRandom();
auto reshapeLhs = NByOne(dim);
auto reshapeRhs = OneByM(dim);
auto bcastLhs = OneByM(dim);
auto bcastRhs = NByOne(dim);
DSizes<Index, 2> dims(dim, dim);
VerifyBlockEvaluator<T, 2, Layout>(
lhs.reshape(reshapeLhs).broadcast(bcastLhs) +
rhs.reshape(reshapeRhs).broadcast(bcastRhs),
[dims]() { return SkewedInnerBlock<Layout, 2>(dims); });
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_cast() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> input(dims);
input.setRandom();
VerifyBlockEvaluator<T, NumDims, Layout>(
input.template cast<int>().template cast<T>(),
[&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_select() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> lhs(dims);
Tensor<T, NumDims, Layout> rhs(dims);
Tensor<bool, NumDims, Layout> cond(dims);
lhs.setRandom();
rhs.setRandom();
cond.setRandom();
VerifyBlockEvaluator<T, NumDims, Layout>(cond.select(lhs, rhs), [&dims]() {
return RandomBlock<Layout>(dims, 1, 20);
});
}
template <typename T, int NumDims, int Layout>
static void test_eval_tensor_padding() {
const int inner_dim = Layout == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> input(dims);
input.setRandom();
DSizes<Index, NumDims> pad_before = RandomDims<NumDims>(0, 4);
DSizes<Index, NumDims> pad_after = RandomDims<NumDims>(0, 4);
array<std::pair<Index, Index>, NumDims> paddings;
for (int i = 0; i < NumDims; ++i) {
paddings[i] = std::make_pair(pad_before[i], pad_after[i]);
}
// Test squeezing reads from inner dim.
if (internal::random<bool>()) {
pad_before[inner_dim] = 0;
pad_after[inner_dim] = 0;
paddings[inner_dim] = std::make_pair(0, 0);
}
DSizes<Index, NumDims> padded_dims;
for (int i = 0; i < NumDims; ++i) {
padded_dims[i] = dims[i] + pad_before[i] + pad_after[i];
}
VerifyBlockEvaluator<T, NumDims, Layout>(
input.pad(paddings),
[&padded_dims]() { return FixedSizeBlock(padded_dims); });
VerifyBlockEvaluator<T, NumDims, Layout>(
input.pad(paddings),
[&padded_dims]() { return RandomBlock<Layout>(padded_dims, 1, 10); });
VerifyBlockEvaluator<T, NumDims, Layout>(
input.pad(paddings),
[&padded_dims]() { return SkewedInnerBlock<Layout>(padded_dims); });
}
// -------------------------------------------------------------------------- //
// Verify that assigning block to a Tensor expression produces the same result
// as an assignment to TensorSliceOp (writing a block is is identical to
@ -300,7 +419,7 @@ static void VerifyBlockAssignment(Tensor<T, NumDims, Layout>& tensor,
// -------------------------------------------------------------------------- //
template <typename T, int NumDims, int Layout>
static void test_assign_tensor_block() {
static void test_assign_to_tensor() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> tensor(dims);
@ -312,11 +431,32 @@ static void test_assign_tensor_block() {
tensor, map, [&dims]() { return FixedSizeBlock(dims); });
}
template <typename T, int NumDims, int Layout>
static void test_assign_to_tensor_reshape() {
DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
Tensor<T, NumDims, Layout> tensor(dims);
TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims);
DSizes<Index, NumDims> shuffled = dims;
std::shuffle(&shuffled[0], &shuffled[NumDims - 1], std::mt19937(g_seed));
VerifyBlockAssignment<T, NumDims, Layout>(
tensor, map.reshape(shuffled),
[&shuffled]() { return RandomBlock<Layout>(shuffled, 1, 10); });
VerifyBlockAssignment<T, NumDims, Layout>(
tensor, map.reshape(shuffled),
[&shuffled]() { return SkewedInnerBlock<Layout>(shuffled); });
VerifyBlockAssignment<T, NumDims, Layout>(
tensor, map.reshape(shuffled),
[&shuffled]() { return FixedSizeBlock(shuffled); });
}
// -------------------------------------------------------------------------- //
//#define CALL_SUBTESTS(NAME) CALL_SUBTEST((NAME<float, 2, RowMajor>()))
#define CALL_SUBTESTS(NAME) \
#define CALL_SUBTESTS_DIMS_LAYOUTS(NAME) \
CALL_SUBTEST((NAME<float, 1, RowMajor>())); \
CALL_SUBTEST((NAME<float, 2, RowMajor>())); \
CALL_SUBTEST((NAME<float, 4, RowMajor>())); \
@ -326,14 +466,24 @@ static void test_assign_tensor_block() {
CALL_SUBTEST((NAME<float, 4, ColMajor>())); \
CALL_SUBTEST((NAME<float, 5, ColMajor>()))
#define CALL_SUBTESTS_LAYOUTS(NAME) \
CALL_SUBTEST((NAME<float, RowMajor>())); \
CALL_SUBTEST((NAME<float, ColMajor>()))
EIGEN_DECLARE_TEST(cxx11_tensor_block_eval) {
// clang-format off
CALL_SUBTESTS(test_eval_tensor_block);
CALL_SUBTESTS(test_eval_tensor_unary_expr_block);
CALL_SUBTESTS(test_eval_tensor_binary_expr_block);
CALL_SUBTESTS(test_eval_tensor_binary_with_unary_expr_block);
CALL_SUBTESTS(test_eval_tensor_broadcast);
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_block);
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_unary_expr_block);
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_binary_expr_block);
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_binary_with_unary_expr_block);
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_broadcast);
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_reshape);
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_cast);
CALL_SUBTESTS_DIMS_LAYOUTS(test_eval_tensor_padding);
CALL_SUBTESTS(test_assign_tensor_block);
CALL_SUBTESTS_LAYOUTS(test_eval_tensor_reshape_with_bcast);
CALL_SUBTESTS_DIMS_LAYOUTS(test_assign_to_tensor);
CALL_SUBTESTS_DIMS_LAYOUTS(test_assign_to_tensor_reshape);
// clang-format on
}

View File

@ -737,10 +737,10 @@ EIGEN_DECLARE_TEST(cxx11_tensor_executor) {
CALL_SUBTEST_COMBINATIONS_V1(8, test_execute_reduction, float, 4);
CALL_SUBTEST_COMBINATIONS_V1(8, test_execute_reduction, float, 5);
CALL_SUBTEST_COMBINATIONS_V1(9, test_execute_reshape, float, 2);
CALL_SUBTEST_COMBINATIONS_V1(9, test_execute_reshape, float, 3);
CALL_SUBTEST_COMBINATIONS_V1(9, test_execute_reshape, float, 4);
CALL_SUBTEST_COMBINATIONS_V1(9, test_execute_reshape, float, 5);
CALL_SUBTEST_COMBINATIONS_V2(9, test_execute_reshape, float, 2);
CALL_SUBTEST_COMBINATIONS_V2(9, test_execute_reshape, float, 3);
CALL_SUBTEST_COMBINATIONS_V2(9, test_execute_reshape, float, 4);
CALL_SUBTEST_COMBINATIONS_V2(9, test_execute_reshape, float, 5);
CALL_SUBTEST_COMBINATIONS_V1(10, test_execute_slice_rvalue, float, 2);
CALL_SUBTEST_COMBINATIONS_V1(10, test_execute_slice_rvalue, float, 3);
@ -779,4 +779,3 @@ EIGEN_DECLARE_TEST(cxx11_tensor_executor) {
// Force CMake to split this test.
// EIGEN_SUFFIXES;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16
}