wrapper for lmstr1 and lmstr + eigenization of calling tests

This commit is contained in:
Thomas Capricelli 2009-08-10 17:37:27 +02:00
parent bb1204a145
commit d1bc9144cb
2 changed files with 180 additions and 130 deletions

View File

@ -151,6 +151,77 @@ int ei_hybrj(
);
}
template<typename Functor, typename Scalar>
int ei_lmstr1(
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &x,
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &fvec,
VectorXi &ipvt,
Scalar tol = Eigen::ei_sqrt(Eigen::machine_epsilon<Scalar>())
)
{
int lwa = 5*x.size()+fvec.size();
int ldfjac = fvec.size();
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > wa(lwa);
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > fjac(ldfjac, x.size());
ipvt.resize(x.size());
return lmstr1 (
Functor::f, 0,
fvec.size(), x.size(), x.data(), fvec.data(),
fjac.data() , ldfjac,
tol,
ipvt.data(),
wa.data(), lwa
);
}
template<typename Functor, typename Scalar>
int ei_lmstr(
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &x,
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &fvec,
int &nfev,
int &njev,
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &fjac,
VectorXi &ipvt,
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &wa1,
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &diag,
int mode=1,
double factor = 100.,
int maxfev = 400,
Scalar ftol = Eigen::ei_sqrt(Eigen::machine_epsilon<Scalar>()),
Scalar xtol = Eigen::ei_sqrt(Eigen::machine_epsilon<Scalar>()),
Scalar gtol = Scalar(0.),
int nprint=0
)
{
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 >
qtf(x.size()),
wa2(x.size()), wa3(x.size()),
wa4(fvec.size());
int ldfjac = fvec.size();
ipvt.resize(x.size());
wa1.resize(x.size());
fjac.resize(ldfjac, x.size());
diag.resize(x.size());
return lmstr (
Functor::f, 0,
fvec.size(), x.size(), x.data(), fvec.data(),
fjac.data() , ldfjac,
ftol, xtol, gtol,
maxfev,
diag.data(), mode,
factor,
nprint,
&nfev, &njev,
ipvt.data(),
qtf.data(),
wa1.data(), wa2.data(), wa3.data(), wa4.data()
);
}
template<typename Functor, typename Scalar>
int ei_lmder1(
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &x,

View File

@ -527,161 +527,140 @@ void testHybrd()
VERIFY_IS_APPROX(x, x_ref);
}
int fcn_lmstr1(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjrow, int iflag)
{
/* subroutine fcn for lmstr1 example. */
int i;
double tmp1, tmp2, tmp3, tmp4;
double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
struct lmstr1_functor {
static int f(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjrow, int iflag)
{
/* subroutine fcn for lmstr1 example. */
int i;
double tmp1, tmp2, tmp3, tmp4;
double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
if (iflag < 2)
{
for (i=1; i<=15; i++)
{
tmp1=i;
tmp2 = 16-i;
tmp3 = tmp1;
if (i > 8) tmp3 = tmp2;
fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3));
}
if (iflag < 2)
{
for (i=1; i<=15; i++)
{
tmp1=i;
tmp2 = 16-i;
tmp3 = tmp1;
if (i > 8) tmp3 = tmp2;
fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3));
}
}
else
{
i = iflag - 1;
tmp1 = i;
tmp2 = 16 - i;
tmp3 = tmp1;
if (i > 8) tmp3 = tmp2;
tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4=tmp4*tmp4;
fjrow[1-1] = -1;
fjrow[2-1] = tmp1*tmp2/tmp4;
fjrow[3-1] = tmp1*tmp3/tmp4;
}
return 0;
}
else
{
i = iflag - 1;
tmp1 = i;
tmp2 = 16 - i;
tmp3 = tmp1;
if (i > 8) tmp3 = tmp2;
tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4=tmp4*tmp4;
fjrow[1-1] = -1;
fjrow[2-1] = tmp1*tmp2/tmp4;
fjrow[3-1] = tmp1*tmp3/tmp4;
}
return 0;
}
};
void testLmstr1()
{
int m, n, ldfjac, info, lwa, ipvt[3];
double tol, fnorm;
double x[30], fvec[15], fjac[9], wa[30];
int m=15, n=3, info;
m = 15;
n = 3;
Eigen::VectorXd x(n), fvec(m);
VectorXi ipvt;
/* the following starting values provide a rough fit. */
/* the following starting values provide a rough fit. */
x.setConstant(n, 1.);
x[0] = 1.;
x[1] = 1.;
x[2] = 1.;
// do the computation
info = ei_lmstr1<lmstr1_functor,double>(x, fvec, ipvt);
ldfjac = 3;
lwa = 30;
// check return value
VERIFY( 1 == info);
/* set tol to the square root of the machine precision.
unless high precision solutions are required,
this is the recommended setting. */
// check norm
VERIFY_IS_APPROX(fvec.norm(), 0.09063596);
tol = sqrt(dpmpar(1));
info = lmstr1(fcn_lmstr1, 0, m, n,
x, fvec, fjac, ldfjac,
tol, ipvt, wa, lwa);
fnorm = enorm(m, fvec);
VERIFY_IS_APPROX(fnorm, 0.09063596);
VERIFY(info==1);
double x_ref[] = {0.08241058, 1.133037, 2.343695 };
for (m=1; m<=3; m++) VERIFY_IS_APPROX(x[m-1], x_ref[m-1]);
// check x
VectorXd x_ref(n);
x_ref << 0.08241058, 1.133037, 2.343695 ;
VERIFY_IS_APPROX(x, x_ref);
}
int fcn_lmstr(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjrow, int iflag)
{
/* subroutine fcn for lmstr example. */
int i;
double tmp1, tmp2, tmp3, tmp4;
double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
if (iflag == 0)
struct lmstr_functor {
static int f(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjrow, int iflag)
{
/* insert print statements here when nprint is positive. */
return 0;
/* subroutine fcn for lmstr example. */
int i;
double tmp1, tmp2, tmp3, tmp4;
double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
if (iflag == 0)
{
/* insert print statements here when nprint is positive. */
return 0;
}
if (iflag < 2)
{
for (i = 1; i <= 15; i++)
{
tmp1 = i;
tmp2 = 16 - i;
tmp3 = tmp1;
if (i > 8) tmp3 = tmp2;
fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3));
}
}
else
{
i = iflag - 1;
tmp1 = i;
tmp2 = 16 - i;
tmp3 = tmp1;
if (i > 8) tmp3 = tmp2;
tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4 = tmp4*tmp4;
fjrow[1-1] = -1.;
fjrow[2-1] = tmp1*tmp2/tmp4;
fjrow[3-1] = tmp1*tmp3/tmp4;
}
return 0;
}
if (iflag < 2)
{
for (i = 1; i <= 15; i++)
{
tmp1 = i;
tmp2 = 16 - i;
tmp3 = tmp1;
if (i > 8) tmp3 = tmp2;
fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3));
}
}
else
{
i = iflag - 1;
tmp1 = i;
tmp2 = 16 - i;
tmp3 = tmp1;
if (i > 8) tmp3 = tmp2;
tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4 = tmp4*tmp4;
fjrow[1-1] = -1.;
fjrow[2-1] = tmp1*tmp2/tmp4;
fjrow[3-1] = tmp1*tmp3/tmp4;
}
return 0;
}
};
void testLmstr()
{
int j, m, n, ldfjac, maxfev, mode, nprint, info, nfev, njev;
int ipvt[3];
double ftol, xtol, gtol, factor, fnorm;
double x[3], fvec[15], fjac[3*3], diag[3], qtf[3],
wa1[3], wa2[3], wa3[3], wa4[15];
const int m=15, n=3;
int info, nfev, njev;
double fnorm;
Eigen::VectorXd x(n), fvec(m), diag(n), wa1;
Eigen::MatrixXd fjac;
VectorXi ipvt;
m = 15;
n = 3;
/* the following starting values provide a rough fit. */
x.setConstant(n, 1.);
/* the following starting values provide a rough fit. */
// do the computation
info = ei_lmstr<lmstr_functor, double>(x, fvec, nfev, njev, fjac, ipvt, wa1, diag);
x[1-1] = 1.;
x[2-1] = 1.;
x[3-1] = 1.;
ldfjac = 3;
/* set ftol and xtol to the square root of the machine */
/* and gtol to zero. unless high solutions are */
/* required, these are the recommended settings. */
ftol = sqrt(dpmpar(1));
xtol = sqrt(dpmpar(1));
gtol = 0.;
maxfev = 400;
mode = 1;
factor = 1.e2;
nprint = 0;
info = lmstr(fcn_lmstr, 0, m, n, x, fvec, fjac, ldfjac, ftol, xtol, gtol,
maxfev, diag, mode, factor, nprint, &nfev, &njev,
ipvt, qtf, wa1, wa2, wa3, wa4);
fnorm = enorm(m, fvec);
VERIFY_IS_APPROX(fnorm, 0.09063596);
// check return values
VERIFY( 1 == info);
VERIFY(nfev==6);
VERIFY(njev==5);
VERIFY(info==1);
double x_ref[] = {0.08241058, 1.133037, 2.343695 };
for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]);
// check norm
fnorm = fvec.norm();
VERIFY_IS_APPROX(fnorm, 0.09063596);
// check x
VectorXd x_ref(n);
x_ref << 0.08241058, 1.133037, 2.343695;
VERIFY_IS_APPROX(x, x_ref);
}
struct lmdif1_functor {