mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
Fix warnings about shadowing definitions.
This commit is contained in:
parent
5e89573e2a
commit
cfdb3ce3f0
@ -58,10 +58,10 @@ struct TensorIOFormat {
|
||||
}
|
||||
|
||||
for (std::size_t k = 1; k < prefix.size(); k++) {
|
||||
int i = int(prefix[k].length()) - 1;
|
||||
while (i >= 0 && prefix[k][i] != '\n') {
|
||||
int j = int(prefix[k].length()) - 1;
|
||||
while (j >= 0 && prefix[k][j] != '\n') {
|
||||
spacer[k] += ' ';
|
||||
i--;
|
||||
j--;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -137,10 +137,10 @@ class TensorWithFormat<T, ColMajor, rank> {
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const TensorWithFormat<T, ColMajor, rank>& wf) {
|
||||
// Switch to RowMajor storage and print afterwards
|
||||
typedef typename T::Index Index;
|
||||
std::array<Index, rank> shuffle;
|
||||
std::array<Index, rank> id;
|
||||
std::iota(id.begin(), id.end(), Index(0));
|
||||
typedef typename T::Index IndexType;
|
||||
std::array<IndexType, rank> shuffle;
|
||||
std::array<IndexType, rank> id;
|
||||
std::iota(id.begin(), id.end(), IndexType(0));
|
||||
std::copy(id.begin(), id.end(), shuffle.rbegin());
|
||||
auto tensor_row_major = wf.t_tensor.swap_layout().shuffle(shuffle);
|
||||
|
||||
@ -187,14 +187,14 @@ template <typename Tensor, std::size_t rank>
|
||||
struct TensorPrinter {
|
||||
static void run(std::ostream& s, const Tensor& _t, const TensorIOFormat& fmt) {
|
||||
typedef typename internal::remove_const<typename Tensor::Scalar>::type Scalar;
|
||||
typedef typename Tensor::Index Index;
|
||||
typedef typename Tensor::Index IndexType;
|
||||
static const int layout = Tensor::Layout;
|
||||
// backwards compatibility case: print tensor after reshaping to matrix of size dim(0) x
|
||||
// (dim(1)*dim(2)*...*dim(rank-1)).
|
||||
if (fmt.legacy_bit) {
|
||||
const Index total_size = internal::array_prod(_t.dimensions());
|
||||
const IndexType total_size = internal::array_prod(_t.dimensions());
|
||||
if (total_size > 0) {
|
||||
const Index first_dim = Eigen::internal::array_get<0>(_t.dimensions());
|
||||
const IndexType first_dim = Eigen::internal::array_get<0>(_t.dimensions());
|
||||
Map<const Array<Scalar, Dynamic, Dynamic, layout> > matrix(_t.data(), first_dim,
|
||||
total_size / first_dim);
|
||||
s << matrix;
|
||||
@ -212,7 +212,7 @@ struct TensorPrinter {
|
||||
is_same<Scalar, std::complex<numext::uint8_t> >::value,
|
||||
std::complex<int>, const Scalar&>::type>::type PrintType;
|
||||
|
||||
const Index total_size = array_prod(_t.dimensions());
|
||||
const IndexType total_size = array_prod(_t.dimensions());
|
||||
|
||||
std::streamsize explicit_precision;
|
||||
if (fmt.precision == StreamPrecision) {
|
||||
@ -230,30 +230,30 @@ struct TensorPrinter {
|
||||
std::streamsize old_precision = 0;
|
||||
if (explicit_precision) old_precision = s.precision(explicit_precision);
|
||||
|
||||
Index width = 0;
|
||||
IndexType width = 0;
|
||||
|
||||
bool align_cols = !(fmt.flags & DontAlignCols);
|
||||
if (align_cols) {
|
||||
// compute the largest width
|
||||
for (Index i = 0; i < total_size; i++) {
|
||||
for (IndexType i = 0; i < total_size; i++) {
|
||||
std::stringstream sstr;
|
||||
sstr.copyfmt(s);
|
||||
sstr << static_cast<PrintType>(_t.data()[i]);
|
||||
width = std::max<Index>(width, Index(sstr.str().length()));
|
||||
width = std::max<IndexType>(width, IndexType(sstr.str().length()));
|
||||
}
|
||||
}
|
||||
std::streamsize old_width = s.width();
|
||||
char old_fill_character = s.fill();
|
||||
|
||||
s << fmt.tenPrefix;
|
||||
for (Index i = 0; i < total_size; i++) {
|
||||
for (IndexType i = 0; i < total_size; i++) {
|
||||
std::array<bool, rank> is_at_end{};
|
||||
std::array<bool, rank> is_at_begin{};
|
||||
|
||||
// is the ith element the end of an coeff (always true), of a row, of a matrix, ...?
|
||||
for (std::size_t k = 0; k < rank; k++) {
|
||||
if ((i + 1) % (std::accumulate(_t.dimensions().rbegin(), _t.dimensions().rbegin() + k, 1,
|
||||
std::multiplies<Index>())) ==
|
||||
std::multiplies<IndexType>())) ==
|
||||
0) {
|
||||
is_at_end[k] = true;
|
||||
}
|
||||
@ -262,7 +262,7 @@ struct TensorPrinter {
|
||||
// is the ith element the begin of an coeff (always true), of a row, of a matrix, ...?
|
||||
for (std::size_t k = 0; k < rank; k++) {
|
||||
if (i % (std::accumulate(_t.dimensions().rbegin(), _t.dimensions().rbegin() + k, 1,
|
||||
std::multiplies<Index>())) ==
|
||||
std::multiplies<IndexType>())) ==
|
||||
0) {
|
||||
is_at_begin[k] = true;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user