RealSchur: Rename l and n to il and iu.

This commit is contained in:
Jitse Niesen 2010-04-06 18:26:30 +01:00
parent 9fad1e392b
commit cc57df9bea

View File

@ -95,10 +95,10 @@ template<typename _MatrixType> class RealSchur
Scalar computeNormOfT();
int findSmallSubdiagEntry(int n, Scalar norm);
void computeShift(Scalar& x, Scalar& y, Scalar& w, int l, int n, Scalar& exshift, int iter);
void findTwoSmallSubdiagEntries(Scalar x, Scalar y, Scalar w, int l, int& m, int n, Scalar& p, Scalar& q, Scalar& r);
void doFrancisStep(int l, int m, int n, Scalar p, Scalar q, Scalar r, Scalar x, Scalar* workspace);
void splitOffTwoRows(int n, Scalar exshift);
void computeShift(Scalar& x, Scalar& y, Scalar& w, int iu, Scalar& exshift, int iter);
void findTwoSmallSubdiagEntries(Scalar x, Scalar y, Scalar w, int l, int& m, int iu, Scalar& p, Scalar& q, Scalar& r);
void doFrancisStep(int l, int m, int iu, Scalar p, Scalar q, Scalar r, Scalar x, Scalar* workspace);
void splitOffTwoRows(int iu, Scalar exshift);
};
@ -118,39 +118,43 @@ void RealSchur<MatrixType>::compute(const MatrixType& matrix)
ColumnVectorType workspaceVector(m_matU.cols());
Scalar* workspace = &workspaceVector.coeffRef(0);
int n = m_matU.cols() - 1;
// The matrix m_matT is divided in three parts.
// Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
// Rows il,...,iu is the part we are working on (the active window).
// Rows iu+1,...,end are already brought in triangular form.
int iu = m_matU.cols() - 1;
Scalar exshift = 0.0;
Scalar norm = computeNormOfT();
int iter = 0;
while (n >= 0)
while (iu >= 0)
{
int l = findSmallSubdiagEntry(n, norm);
int il = findSmallSubdiagEntry(iu, norm);
// Check for convergence
if (l == n) // One root found
if (il == iu) // One root found
{
m_matT.coeffRef(n,n) = m_matT.coeff(n,n) + exshift;
m_eivalues.coeffRef(n) = ComplexScalar(m_matT.coeff(n,n), 0.0);
n--;
m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
m_eivalues.coeffRef(iu) = ComplexScalar(m_matT.coeff(iu,iu), 0.0);
iu--;
iter = 0;
}
else if (l == n-1) // Two roots found
else if (il == iu-1) // Two roots found
{
splitOffTwoRows(n, exshift);
n = n - 2;
splitOffTwoRows(iu, exshift);
iu -= 2;
iter = 0;
}
else // No convergence yet
{
Scalar p = 0, q = 0, r = 0, x, y, w;
computeShift(x, y, w, l, n, exshift, iter);
computeShift(x, y, w, iu, exshift, iter);
iter = iter + 1; // (Could check iteration count here.)
int m;
findTwoSmallSubdiagEntries(x, y, w, l, m, n, p, q, r);
doFrancisStep(l, m, n, p, q, r, x, workspace);
findTwoSmallSubdiagEntries(x, y, w, il, m, iu, p, q, r);
doFrancisStep(il, m, iu, p, q, r, x, workspace);
} // check convergence
} // while (n >= 0)
} // while (iu >= 0)
m_isInitialized = true;
}
@ -170,32 +174,32 @@ inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
// Look for single small sub-diagonal element
template<typename MatrixType>
inline int RealSchur<MatrixType>::findSmallSubdiagEntry(int n, Scalar norm)
inline int RealSchur<MatrixType>::findSmallSubdiagEntry(int iu, Scalar norm)
{
int l = n;
while (l > 0)
int res = iu;
while (res > 0)
{
Scalar s = ei_abs(m_matT.coeff(l-1,l-1)) + ei_abs(m_matT.coeff(l,l));
Scalar s = ei_abs(m_matT.coeff(res-1,res-1)) + ei_abs(m_matT.coeff(res,res));
if (s == 0.0)
s = norm;
if (ei_abs(m_matT.coeff(l,l-1)) < NumTraits<Scalar>::epsilon() * s)
if (ei_abs(m_matT.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
break;
l--;
res--;
}
return l;
return res;
}
template<typename MatrixType>
inline void RealSchur<MatrixType>::splitOffTwoRows(int n, Scalar exshift)
inline void RealSchur<MatrixType>::splitOffTwoRows(int iu, Scalar exshift)
{
const int size = m_matU.cols();
Scalar w = m_matT.coeff(n,n-1) * m_matT.coeff(n-1,n);
Scalar p = (m_matT.coeff(n-1,n-1) - m_matT.coeff(n,n)) * Scalar(0.5);
Scalar w = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
Scalar p = (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu)) * Scalar(0.5);
Scalar q = p * p + w;
Scalar z = ei_sqrt(ei_abs(q));
m_matT.coeffRef(n,n) = m_matT.coeff(n,n) + exshift;
m_matT.coeffRef(n-1,n-1) = m_matT.coeff(n-1,n-1) + exshift;
Scalar x = m_matT.coeff(n,n);
m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
m_matT.coeffRef(iu-1,iu-1) = m_matT.coeff(iu-1,iu-1) + exshift;
Scalar x = m_matT.coeff(iu,iu);
// Scalar pair
if (q >= 0)
@ -205,42 +209,37 @@ inline void RealSchur<MatrixType>::splitOffTwoRows(int n, Scalar exshift)
else
z = p - z;
m_eivalues.coeffRef(n-1) = ComplexScalar(x + z, 0.0);
m_eivalues.coeffRef(n) = ComplexScalar(z!=0.0 ? x - w / z : m_eivalues.coeff(n-1).real(), 0.0);
m_eivalues.coeffRef(iu-1) = ComplexScalar(x + z, 0.0);
m_eivalues.coeffRef(iu) = ComplexScalar(z!=0.0 ? x - w / z : m_eivalues.coeff(iu-1).real(), 0.0);
PlanarRotation<Scalar> rot;
rot.makeGivens(z, m_matT.coeff(n, n-1));
m_matT.block(0, n-1, size, size-n+1).applyOnTheLeft(n-1, n, rot.adjoint());
m_matT.block(0, 0, n+1, size).applyOnTheRight(n-1, n, rot);
m_matU.applyOnTheRight(n-1, n, rot);
rot.makeGivens(z, m_matT.coeff(iu, iu-1));
m_matT.block(0, iu-1, size, size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
m_matT.block(0, 0, iu+1, size).applyOnTheRight(iu-1, iu, rot);
m_matU.applyOnTheRight(iu-1, iu, rot);
}
else // Complex pair
{
m_eivalues.coeffRef(n-1) = ComplexScalar(x + p, z);
m_eivalues.coeffRef(n) = ComplexScalar(x + p, -z);
m_eivalues.coeffRef(iu-1) = ComplexScalar(x + p, z);
m_eivalues.coeffRef(iu) = ComplexScalar(x + p, -z);
}
}
// Form shift
template<typename MatrixType>
inline void RealSchur<MatrixType>::computeShift(Scalar& x, Scalar& y, Scalar& w, int l, int n, Scalar& exshift, int iter)
inline void RealSchur<MatrixType>::computeShift(Scalar& x, Scalar& y, Scalar& w, int iu, Scalar& exshift, int iter)
{
x = m_matT.coeff(n,n);
y = 0.0;
w = 0.0;
if (l < n)
{
y = m_matT.coeff(n-1,n-1);
w = m_matT.coeff(n,n-1) * m_matT.coeff(n-1,n);
}
x = m_matT.coeff(iu,iu);
y = m_matT.coeff(iu-1,iu-1);
w = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
// Wilkinson's original ad hoc shift
if (iter == 10)
{
exshift += x;
for (int i = 0; i <= n; ++i)
for (int i = 0; i <= iu; ++i)
m_matT.coeffRef(i,i) -= x;
Scalar s = ei_abs(m_matT.coeff(n,n-1)) + ei_abs(m_matT.coeff(n-1,n-2));
Scalar s = ei_abs(m_matT.coeff(iu,iu-1)) + ei_abs(m_matT.coeff(iu-1,iu-2));
x = y = Scalar(0.75) * s;
w = Scalar(-0.4375) * s * s;
}
@ -256,7 +255,7 @@ inline void RealSchur<MatrixType>::computeShift(Scalar& x, Scalar& y, Scalar& w,
if (y < x)
s = -s;
s = Scalar(x - w / ((y - x) / 2.0 + s));
for (int i = 0; i <= n; ++i)
for (int i = 0; i <= iu; ++i)
m_matT.coeffRef(i,i) -= s;
exshift += s;
x = y = w = Scalar(0.964);
@ -266,10 +265,10 @@ inline void RealSchur<MatrixType>::computeShift(Scalar& x, Scalar& y, Scalar& w,
// Look for two consecutive small sub-diagonal elements
template<typename MatrixType>
inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y, Scalar w, int l, int& m, int n, Scalar& p, Scalar& q, Scalar& r)
inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y, Scalar w, int il, int& m, int iu, Scalar& p, Scalar& q, Scalar& r)
{
m = n-2;
while (m >= l)
m = iu-2;
while (m >= il)
{
Scalar z = m_matT.coeff(m,m);
r = x - z;
@ -281,7 +280,7 @@ inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y
p = p / s;
q = q / s;
r = r / s;
if (m == l) {
if (m == il) {
break;
}
if (ei_abs(m_matT.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
@ -293,7 +292,7 @@ inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y
m--;
}
for (int i = m+2; i <= n; ++i)
for (int i = m+2; i <= iu; ++i)
{
m_matT.coeffRef(i,i-2) = 0.0;
if (i > m+2)
@ -301,15 +300,15 @@ inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y
}
}
// Double QR step involving rows l:n and columns m:n
// Double QR step involving rows il:iu and columns m:iu
template<typename MatrixType>
inline void RealSchur<MatrixType>::doFrancisStep(int l, int m, int n, Scalar p, Scalar q, Scalar r, Scalar x, Scalar* workspace)
inline void RealSchur<MatrixType>::doFrancisStep(int il, int m, int iu, Scalar p, Scalar q, Scalar r, Scalar x, Scalar* workspace)
{
const int size = m_matU.cols();
for (int k = m; k <= n-1; ++k)
for (int k = m; k <= iu-1; ++k)
{
int notlast = (k != n-1);
int notlast = (k != iu-1);
if (k != m) {
p = m_matT.coeff(k,k-1);
q = m_matT.coeff(k+1,k-1);
@ -335,7 +334,7 @@ inline void RealSchur<MatrixType>::doFrancisStep(int l, int m, int n, Scalar p,
{
if (k != m)
m_matT.coeffRef(k,k-1) = -s * x;
else if (l != m)
else if (il != m)
m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
p = p + s;
@ -344,7 +343,7 @@ inline void RealSchur<MatrixType>::doFrancisStep(int l, int m, int n, Scalar p,
{
Matrix<Scalar, 2, 1> ess(q/p, r/p);
m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, p/s, workspace);
m_matT.block(0, k, std::min(n,k+3) + 1, 3).applyHouseholderOnTheRight(ess, p/s, workspace);
m_matT.block(0, k, std::min(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, p/s, workspace);
m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, p/s, workspace);
}
else
@ -352,7 +351,7 @@ inline void RealSchur<MatrixType>::doFrancisStep(int l, int m, int n, Scalar p,
Matrix<Scalar, 1, 1> ess;
ess.coeffRef(0) = q/p;
m_matT.block(k, k, 2, size-k).applyHouseholderOnTheLeft(ess, p/s, workspace);
m_matT.block(0, k, std::min(n,k+3) + 1, 2).applyHouseholderOnTheRight(ess, p/s, workspace);
m_matT.block(0, k, std::min(iu,k+3) + 1, 2).applyHouseholderOnTheRight(ess, p/s, workspace);
m_matU.block(0, k, size, 2).applyHouseholderOnTheRight(ess, p/s, workspace);
}
} // (s != 0)