mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Improved the efficiency of the tensor evaluation code on thread pools and gpus.
This commit is contained in:
parent
c285fda7f4
commit
cc1bacea5b
@ -77,17 +77,17 @@ struct TensorExecutor<Expression, DefaultDevice, true>
|
||||
#ifdef EIGEN_USE_THREADS
|
||||
template <typename Evaluator, typename Index, bool Vectorizable = Evaluator::PacketAccess>
|
||||
struct EvalRange {
|
||||
static void run(Evaluator& evaluator, const Index first, const Index last) {
|
||||
static void run(Evaluator* evaluator, const Index first, const Index last) {
|
||||
eigen_assert(last > first);
|
||||
for (Index i = first; i < last; ++i) {
|
||||
evaluator.evalScalar(i);
|
||||
evaluator->evalScalar(i);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Evaluator, typename Index>
|
||||
struct EvalRange<Evaluator, Index, true> {
|
||||
static void run(Evaluator& evaluator, const Index first, const Index last,) {
|
||||
static void run(Evaluator* evaluator, const Index first, const Index last) {
|
||||
eigen_assert(last > first);
|
||||
|
||||
Index i = first;
|
||||
@ -96,12 +96,12 @@ struct EvalRange<Evaluator, Index, true> {
|
||||
eigen_assert(first % PacketSize == 0);
|
||||
Index lastPacket = last - (last % PacketSize);
|
||||
for (; i < lastPacket; i += PacketSize) {
|
||||
evaluator.evalPacket(i);
|
||||
evaluator->evalPacket(i);
|
||||
}
|
||||
}
|
||||
|
||||
for (; i < last; ++i) {
|
||||
evaluator.evalScalar(i);
|
||||
evaluator->evalScalar(i);
|
||||
}
|
||||
}
|
||||
};
|
||||
@ -112,24 +112,23 @@ struct TensorExecutor<Expression, ThreadPoolDevice, Vectorizable>
|
||||
typedef typename Expression::Index Index;
|
||||
static inline void run(const Expression& expr, const ThreadPoolDevice& device)
|
||||
{
|
||||
TensorEvaluator<Expression, ThreadPoolDevice> evaluator(expr, device);
|
||||
typedef TensorEvaluator<Expression, ThreadPoolDevice> Evaluator;
|
||||
Evaluator evaluator(expr, device);
|
||||
evaluator.evalSubExprsIfNeeded();
|
||||
|
||||
const Index size = evaluator.dimensions().TotalSize();
|
||||
|
||||
static const int PacketSize = Vectorizable ? unpacket_traits<typename TensorEvaluator<Expression, DefaultDevice>::PacketReturnType>::size : 1;
|
||||
static const int PacketSize = Vectorizable ? unpacket_traits<typename Evaluator::PacketReturnType>::size : 1;
|
||||
|
||||
int blocksz = std::ceil<int>(static_cast<float>(size)/device.numThreads()) + PacketSize - 1;
|
||||
const Index blocksize = std::max<Index>(PacketSize, (blocksz - (blocksz % PacketSize)));
|
||||
const Index numblocks = size / blocksize;
|
||||
|
||||
TensorEvaluator<Expression, DefaultDevice> single_threaded_eval(expr, DefaultDevice());
|
||||
|
||||
Index i = 0;
|
||||
vector<std::future<void> > results;
|
||||
results.reserve(numblocks);
|
||||
for (int i = 0; i < numblocks; ++i) {
|
||||
results.push_back(std::async(std::launch::async, &EvalRange<TensorEvaluator<Expression, DefaultDevice>, Index>::run, single_threaded_eval, i*blocksize, (i+1)*blocksize));
|
||||
results.push_back(std::async(std::launch::async, &EvalRange<Evaluator, Index>::run, &evaluator, i*blocksize, (i+1)*blocksize));
|
||||
}
|
||||
|
||||
for (int i = 0; i < numblocks; ++i) {
|
||||
@ -137,7 +136,7 @@ struct TensorExecutor<Expression, ThreadPoolDevice, Vectorizable>
|
||||
}
|
||||
|
||||
if (numblocks * blocksize < size) {
|
||||
EvalRange<TensorEvaluator<Expression, DefaultDevice>, Index>::run(single_threaded_eval, numblocks * blocksize, size, nullptr);
|
||||
EvalRange<Evaluator, Index>::run(&evaluator, numblocks * blocksize, size);
|
||||
}
|
||||
|
||||
evaluator.cleanup();
|
||||
@ -149,15 +148,11 @@ struct TensorExecutor<Expression, ThreadPoolDevice, Vectorizable>
|
||||
// GPU: the evaluation of the expression is offloaded to a GPU.
|
||||
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
|
||||
template <typename Evaluator>
|
||||
__global__ void EigenMetaKernelNoCheck(Evaluator eval) {
|
||||
const int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
eval.evalScalar(index);
|
||||
}
|
||||
template <typename Evaluator>
|
||||
__global__ void EigenMetaKernelPeel(Evaluator eval, int peel_start_offset, int size) {
|
||||
const int index = peel_start_offset + blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (index < size) {
|
||||
eval.evalScalar(index);
|
||||
__global__ void EigenMetaKernel(Evaluator eval, unsigned int size) {
|
||||
const int first_index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int step_size = blockDim.x * gridDim.x;
|
||||
for (int i = first_index; i < size; i += step_size) {
|
||||
eval.evalScalar(i);
|
||||
}
|
||||
}
|
||||
|
||||
@ -169,19 +164,12 @@ struct TensorExecutor<Expression, GpuDevice, Vectorizable>
|
||||
{
|
||||
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
|
||||
evaluator.evalSubExprsIfNeeded();
|
||||
const int num_blocks = getNumCudaMultiProcessors() * maxCudaThreadsPerMultiProcessor() / maxCudaThreadsPerBlock();
|
||||
const int block_size = maxCudaThreadsPerBlock();
|
||||
|
||||
const Index size = evaluator.dimensions().TotalSize();
|
||||
const int block_size = std::min<int>(size, 32*32);
|
||||
const int num_blocks = size / block_size;
|
||||
EigenMetaKernelNoCheck<TensorEvaluator<Expression, GpuDevice> > <<<num_blocks, block_size, 0, device.stream()>>>(evaluator);
|
||||
|
||||
const int remaining_items = size % block_size;
|
||||
if (remaining_items > 0) {
|
||||
const int peel_start_offset = num_blocks * block_size;
|
||||
const int peel_block_size = std::min<int>(size, 32);
|
||||
const int peel_num_blocks = (remaining_items + peel_block_size - 1) / peel_block_size;
|
||||
EigenMetaKernelPeel<TensorEvaluator<Expression, GpuDevice> > <<<peel_num_blocks, peel_block_size, 0, device.stream()>>>(evaluator, peel_start_offset, size);
|
||||
}
|
||||
EigenMetaKernel<TensorEvaluator<Expression, GpuDevice> > <<<num_blocks, block_size, 0, device.stream()>>>(evaluator, size);
|
||||
eigen_assert(cudaGetLastError() == cudaSuccess);
|
||||
evaluator.cleanup();
|
||||
}
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user