diff --git a/doc/SparseQuickReference.dox b/doc/SparseQuickReference.dox
index d04ac35c5..e0a30edcc 100644
--- a/doc/SparseQuickReference.dox
+++ b/doc/SparseQuickReference.dox
@@ -21,7 +21,7 @@ i.e either row major or column major. The default is column major. Most arithmet
Resize/Reserve |
\code
- sm1.resize(m,n); //Change sm1 to a m x n matrix.
+ sm1.resize(m,n); // Change sm1 to a m x n matrix.
sm1.reserve(nnz); // Allocate room for nnz nonzeros elements.
\endcode
|
@@ -151,10 +151,10 @@ It is easy to perform arithmetic operations on sparse matrices provided that the
Permutation |
\code
-perm.indices(); // Reference to the vector of indices
+perm.indices(); // Reference to the vector of indices
sm1.twistedBy(perm); // Permute rows and columns
-sm2 = sm1 * perm; //Permute the columns
-sm2 = perm * sm1; // Permute the columns
+sm2 = sm1 * perm; // Permute the columns
+sm2 = perm * sm1; // Permute the columns
\endcode
|
@@ -181,9 +181,9 @@ sm2 = perm * sm1; // Permute the columns
\section sparseotherops Other supported operations
-Operations | Code | Notes |
+ Code | Notes |
+Sub-matrices |
-Sub-matrices |
\code
sm1.block(startRow, startCol, rows, cols);
@@ -193,25 +193,31 @@ sm2 = perm * sm1; // Permute the columns
sm1.bottomLeftCorner( rows, cols);
sm1.bottomRightCorner( rows, cols);
\endcode
- | |
+
+Contrary to dense matrices, here all these methods are read-only.\n
+See \ref TutorialSparse_SubMatrices and below for read-write sub-matrices.
+ |
-
- Range |
+ Range |
+
\code
- sm1.innerVector(outer);
- sm1.innerVectors(start, size);
- sm1.leftCols(size);
- sm2.rightCols(size);
- sm1.middleRows(start, numRows);
- sm1.middleCols(start, numCols);
- sm1.col(j);
+ sm1.innerVector(outer); // RW
+ sm1.innerVectors(start, size); // RW
+ sm1.leftCols(size); // RW
+ sm2.rightCols(size); // RO because sm2 is row-major
+ sm1.middleRows(start, numRows); // RO becasue sm1 is column-major
+ sm1.middleCols(start, numCols); // RW
+ sm1.col(j); // RW
\endcode
|
-A inner vector is either a row (for row-major) or a column (for column-major). As stated earlier, the evaluation can be done in a matrix with different storage order |
+
+A inner vector is either a row (for row-major) or a column (for column-major).\n
+As stated earlier, for a read-write sub-matrix (RW), the evaluation can be done in a matrix with different storage order.
+ |
+ Triangular and selfadjoint views |
- Triangular and selfadjoint views |
\code
sm2 = sm1.triangularview();
@@ -222,26 +228,30 @@ sm2 = perm * sm1; // Permute the columns
\code
\endcode |
-
-Triangular solve |
+ Triangular solve |
+
\code
dv2 = sm1.triangularView().solve(dv1);
- dv2 = sm1.topLeftCorner(size, size).triangularView().solve(dv1);
+ dv2 = sm1.topLeftCorner(size, size)
+ .triangularView().solve(dv1);
\endcode
|
For general sparse solve, Use any suitable module described at \ref TopicSparseSystems |
+ Low-level API |
- Low-level API |
\code
-sm1.valuePtr(); // Pointer to the values
-sm1.innerIndextr(); // Pointer to the indices.
-sm1.outerIndexPtr(); //Pointer to the beginning of each inner vector
+sm1.valuePtr(); // Pointer to the values
+sm1.innerIndextr(); // Pointer to the indices.
+sm1.outerIndexPtr(); // Pointer to the beginning of each inner vector
\endcode
|
- If the matrix is not in compressed form, makeCompressed() should be called before. Note that these functions are mostly provided for interoperability purposes with external libraries. A better access to the values of the matrix is done by using the InnerIterator class as described in \link TutorialSparse the Tutorial Sparse \endlink section |
+
+If the matrix is not in compressed form, makeCompressed() should be called before.\n
+Note that these functions are mostly provided for interoperability purposes with external libraries.\n
+A better access to the values of the matrix is done by using the InnerIterator class as described in \link TutorialSparse the Tutorial Sparse \endlink section |
*/
diff --git a/doc/TutorialSparse.dox b/doc/TutorialSparse.dox
index 1f0be387d..352907408 100644
--- a/doc/TutorialSparse.dox
+++ b/doc/TutorialSparse.dox
@@ -241,11 +241,11 @@ In the following \em sm denotes a sparse matrix, \em sv a sparse vector, \em dm
sm1.real() sm1.imag() -sm1 0.5*sm1
sm1+sm2 sm1-sm2 sm1.cwiseProduct(sm2)
\endcode
-However, a strong restriction is that the storage orders must match. For instance, in the following example:
+However, a strong restriction is that the storage orders must match. For instance, in the following example:
\code
sm4 = sm1 + sm2 + sm3;
\endcode
-sm1, sm2, and sm3 must all be row-major or all column major.
+sm1, sm2, and sm3 must all be row-major or all column-major.
On the other hand, there is no restriction on the target matrix sm4.
For instance, this means that for computing \f$ A^T + A \f$, the matrix \f$ A^T \f$ must be evaluated into a temporary matrix of compatible storage order:
\code
@@ -311,6 +311,26 @@ sm2 = sm1.transpose() * P;
\endcode
+\subsection TutorialSparse_SubMatrices Block operations
+
+Regarding read-access, sparse matrices expose the same API than for dense matrices to access to sub-matrices such as blocks, columns, and rows. See \ref TutorialBlockOperations for a detailed introduction.
+However, for performance reasons, writing to a sub-sparse-matrix is much more limited, and currently only contiguous sets of columns (resp. rows) of a column-major (resp. row-major) SparseMatrix are writable. Moreover, this information has to be known at compile-time, leaving out methods such as block(...) and corner*(...). The available API for write-access to a SparseMatrix are summarized below:
+\code
+SparseMatrix sm1;
+sm1.col(j) = ...;
+sm1.leftCols(ncols) = ...;
+sm1.middleCols(j,ncols) = ...;
+sm1.rightCols(ncols) = ...;
+
+SparseMatrix sm2;
+sm2.row(i) = ...;
+sm2.topRows(nrows) = ...;
+sm2.middleRows(i,nrows) = ...;
+sm2.bottomRows(nrows) = ...;
+\endcode
+
+In addition, sparse matrices expose the SparseMatrixBase::innerVector() and SparseMatrixBase::innerVectors() methods, which are aliases to the col/middleCols methods for a column-major storage, and to the row/middleRows methods for a row-major storage.
+
\subsection TutorialSparse_TriangularSelfadjoint Triangular and selfadjoint views
Just as with dense matrices, the triangularView() function can be used to address a triangular part of the matrix, and perform triangular solves with a dense right hand side:
|