mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-12 19:20:36 +08:00
Clarify documentation on the restrictions of writable sparse block expressions.
This commit is contained in:
parent
64ce78c2ec
commit
c85fbfd0b7
@ -21,7 +21,7 @@ i.e either row major or column major. The default is column major. Most arithmet
|
||||
<td> Resize/Reserve</td>
|
||||
<td>
|
||||
\code
|
||||
sm1.resize(m,n); //Change sm1 to a m x n matrix.
|
||||
sm1.resize(m,n); // Change sm1 to a m x n matrix.
|
||||
sm1.reserve(nnz); // Allocate room for nnz nonzeros elements.
|
||||
\endcode
|
||||
</td>
|
||||
@ -151,10 +151,10 @@ It is easy to perform arithmetic operations on sparse matrices provided that the
|
||||
<td> Permutation </td>
|
||||
<td>
|
||||
\code
|
||||
perm.indices(); // Reference to the vector of indices
|
||||
perm.indices(); // Reference to the vector of indices
|
||||
sm1.twistedBy(perm); // Permute rows and columns
|
||||
sm2 = sm1 * perm; //Permute the columns
|
||||
sm2 = perm * sm1; // Permute the columns
|
||||
sm2 = sm1 * perm; // Permute the columns
|
||||
sm2 = perm * sm1; // Permute the columns
|
||||
\endcode
|
||||
</td>
|
||||
<td>
|
||||
@ -181,9 +181,9 @@ sm2 = perm * sm1; // Permute the columns
|
||||
|
||||
\section sparseotherops Other supported operations
|
||||
<table class="manual">
|
||||
<tr><th>Operations</th> <th> Code </th> <th> Notes</th> </tr>
|
||||
<tr><th style="min-width:initial"> Code </th> <th> Notes</th> </tr>
|
||||
<tr><td colspan="2">Sub-matrices</td></tr>
|
||||
<tr>
|
||||
<td>Sub-matrices</td>
|
||||
<td>
|
||||
\code
|
||||
sm1.block(startRow, startCol, rows, cols);
|
||||
@ -193,25 +193,31 @@ sm2 = perm * sm1; // Permute the columns
|
||||
sm1.bottomLeftCorner( rows, cols);
|
||||
sm1.bottomRightCorner( rows, cols);
|
||||
\endcode
|
||||
</td> <td> </td>
|
||||
</td><td>
|
||||
Contrary to dense matrices, here <strong>all these methods are read-only</strong>.\n
|
||||
See \ref TutorialSparse_SubMatrices and below for read-write sub-matrices.
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td> Range </td>
|
||||
<tr class="alt"><td colspan="2"> Range </td></tr>
|
||||
<tr class="alt">
|
||||
<td>
|
||||
\code
|
||||
sm1.innerVector(outer);
|
||||
sm1.innerVectors(start, size);
|
||||
sm1.leftCols(size);
|
||||
sm2.rightCols(size);
|
||||
sm1.middleRows(start, numRows);
|
||||
sm1.middleCols(start, numCols);
|
||||
sm1.col(j);
|
||||
sm1.innerVector(outer); // RW
|
||||
sm1.innerVectors(start, size); // RW
|
||||
sm1.leftCols(size); // RW
|
||||
sm2.rightCols(size); // RO because sm2 is row-major
|
||||
sm1.middleRows(start, numRows); // RO becasue sm1 is column-major
|
||||
sm1.middleCols(start, numCols); // RW
|
||||
sm1.col(j); // RW
|
||||
\endcode
|
||||
</td>
|
||||
<td>A inner vector is either a row (for row-major) or a column (for column-major). As stated earlier, the evaluation can be done in a matrix with different storage order </td>
|
||||
<td>
|
||||
A inner vector is either a row (for row-major) or a column (for column-major).\n
|
||||
As stated earlier, for a read-write sub-matrix (RW), the evaluation can be done in a matrix with different storage order.
|
||||
</td>
|
||||
</tr>
|
||||
<tr><td colspan="2"> Triangular and selfadjoint views</td></tr>
|
||||
<tr>
|
||||
<td> Triangular and selfadjoint views</td>
|
||||
<td>
|
||||
\code
|
||||
sm2 = sm1.triangularview<Lower>();
|
||||
@ -222,26 +228,30 @@ sm2 = perm * sm1; // Permute the columns
|
||||
\code
|
||||
\endcode </td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>Triangular solve </td>
|
||||
<tr class="alt"><td colspan="2">Triangular solve </td></tr>
|
||||
<tr class="alt">
|
||||
<td>
|
||||
\code
|
||||
dv2 = sm1.triangularView<Upper>().solve(dv1);
|
||||
dv2 = sm1.topLeftCorner(size, size).triangularView<Lower>().solve(dv1);
|
||||
dv2 = sm1.topLeftCorner(size, size)
|
||||
.triangularView<Lower>().solve(dv1);
|
||||
\endcode
|
||||
</td>
|
||||
<td> For general sparse solve, Use any suitable module described at \ref TopicSparseSystems </td>
|
||||
</tr>
|
||||
<tr><td colspan="2"> Low-level API</td></tr>
|
||||
<tr>
|
||||
<td> Low-level API</td>
|
||||
<td>
|
||||
\code
|
||||
sm1.valuePtr(); // Pointer to the values
|
||||
sm1.innerIndextr(); // Pointer to the indices.
|
||||
sm1.outerIndexPtr(); //Pointer to the beginning of each inner vector
|
||||
sm1.valuePtr(); // Pointer to the values
|
||||
sm1.innerIndextr(); // Pointer to the indices.
|
||||
sm1.outerIndexPtr(); // Pointer to the beginning of each inner vector
|
||||
\endcode
|
||||
</td>
|
||||
<td> If the matrix is not in compressed form, makeCompressed() should be called before. Note that these functions are mostly provided for interoperability purposes with external libraries. A better access to the values of the matrix is done by using the InnerIterator class as described in \link TutorialSparse the Tutorial Sparse \endlink section</td>
|
||||
<td>
|
||||
If the matrix is not in compressed form, makeCompressed() should be called before.\n
|
||||
Note that these functions are mostly provided for interoperability purposes with external libraries.\n
|
||||
A better access to the values of the matrix is done by using the InnerIterator class as described in \link TutorialSparse the Tutorial Sparse \endlink section</td>
|
||||
</tr>
|
||||
</table>
|
||||
*/
|
||||
|
@ -241,11 +241,11 @@ In the following \em sm denotes a sparse matrix, \em sv a sparse vector, \em dm
|
||||
sm1.real() sm1.imag() -sm1 0.5*sm1
|
||||
sm1+sm2 sm1-sm2 sm1.cwiseProduct(sm2)
|
||||
\endcode
|
||||
However, a strong restriction is that the storage orders must match. For instance, in the following example:
|
||||
However, <strong>a strong restriction is that the storage orders must match</strong>. For instance, in the following example:
|
||||
\code
|
||||
sm4 = sm1 + sm2 + sm3;
|
||||
\endcode
|
||||
sm1, sm2, and sm3 must all be row-major or all column major.
|
||||
sm1, sm2, and sm3 must all be row-major or all column-major.
|
||||
On the other hand, there is no restriction on the target matrix sm4.
|
||||
For instance, this means that for computing \f$ A^T + A \f$, the matrix \f$ A^T \f$ must be evaluated into a temporary matrix of compatible storage order:
|
||||
\code
|
||||
@ -311,6 +311,26 @@ sm2 = sm1.transpose() * P;
|
||||
\endcode
|
||||
|
||||
|
||||
\subsection TutorialSparse_SubMatrices Block operations
|
||||
|
||||
Regarding read-access, sparse matrices expose the same API than for dense matrices to access to sub-matrices such as blocks, columns, and rows. See \ref TutorialBlockOperations for a detailed introduction.
|
||||
However, for performance reasons, writing to a sub-sparse-matrix is much more limited, and currently only contiguous sets of columns (resp. rows) of a column-major (resp. row-major) SparseMatrix are writable. Moreover, this information has to be known at compile-time, leaving out methods such as <tt>block(...)</tt> and <tt>corner*(...)</tt>. The available API for write-access to a SparseMatrix are summarized below:
|
||||
\code
|
||||
SparseMatrix<double,ColMajor> sm1;
|
||||
sm1.col(j) = ...;
|
||||
sm1.leftCols(ncols) = ...;
|
||||
sm1.middleCols(j,ncols) = ...;
|
||||
sm1.rightCols(ncols) = ...;
|
||||
|
||||
SparseMatrix<double,RowMajor> sm2;
|
||||
sm2.row(i) = ...;
|
||||
sm2.topRows(nrows) = ...;
|
||||
sm2.middleRows(i,nrows) = ...;
|
||||
sm2.bottomRows(nrows) = ...;
|
||||
\endcode
|
||||
|
||||
In addition, sparse matrices expose the SparseMatrixBase::innerVector() and SparseMatrixBase::innerVectors() methods, which are aliases to the col/middleCols methods for a column-major storage, and to the row/middleRows methods for a row-major storage.
|
||||
|
||||
\subsection TutorialSparse_TriangularSelfadjoint Triangular and selfadjoint views
|
||||
|
||||
Just as with dense matrices, the triangularView() function can be used to address a triangular part of the matrix, and perform triangular solves with a dense right hand side:
|
||||
|
Loading…
x
Reference in New Issue
Block a user