From c694be1214d99c3cc0431c719c110d10cf64a7ec Mon Sep 17 00:00:00 2001 From: Alberto Luaces Date: Tue, 23 Jul 2019 09:24:06 +0000 Subject: [PATCH] Fixed Tensor documentation formatting. --- unsupported/Eigen/CXX11/src/Tensor/README.md | 158 ++++++++++--------- 1 file changed, 80 insertions(+), 78 deletions(-) diff --git a/unsupported/Eigen/CXX11/src/Tensor/README.md b/unsupported/Eigen/CXX11/src/Tensor/README.md index 006f35b23..1f4cf272b 100644 --- a/unsupported/Eigen/CXX11/src/Tensor/README.md +++ b/unsupported/Eigen/CXX11/src/Tensor/README.md @@ -1630,81 +1630,81 @@ dimension in RowMajor layout. For example, given the following input tensor: - Eigen::Tensor tensor(3,4); - tensor.setValues({{0.0f, 1.0f, 2.0f, 3.0f}, - {4.0f, 5.0f, 6.0f, 7.0f}, - {8.0f, 9.0f, 10.0f, 11.0f}}); + Eigen::Tensor tensor(3,4); + tensor.setValues({{0.0f, 1.0f, 2.0f, 3.0f}, + {4.0f, 5.0f, 6.0f, 7.0f}, + {8.0f, 9.0f, 10.0f, 11.0f}}); - cout << "tensor: " << endl << tensor << endl; -=> -tensor: - 0 1 2 3 - 4 5 6 7 - 8 9 10 11 + cout << "tensor: " << endl << tensor << endl; + => + tensor: + 0 1 2 3 + 4 5 6 7 + 8 9 10 11 Six 2x2 patches can be extracted and indexed using the following code: - Eigen::Tensor patch; - Eigen::array patch_dims; - patch_dims[0] = 2; - patch_dims[1] = 2; - patch = tensor.extract_patches(patch_dims); - for (int k = 0; k < 6; ++k) { - cout << "patch index: " << k << endl; - for (int i = 0; i < 2; ++i) { - for (int j = 0; j < 2; ++j) { - if (DataLayout == ColMajor) { - cout << patch(i, j, k) << " "; - } else { - cout << patch(k, i, j) << " "; - } + Eigen::Tensor patch; + Eigen::array patch_dims; + patch_dims[0] = 2; + patch_dims[1] = 2; + patch = tensor.extract_patches(patch_dims); + for (int k = 0; k < 6; ++k) { + cout << "patch index: " << k << endl; + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 2; ++j) { + if (DataLayout == ColMajor) { + cout << patch(i, j, k) << " "; + } else { + cout << patch(k, i, j) << " "; + } + } + cout << endl; } - cout << endl; } - } This code results in the following output when the data layout is ColMajor: -patch index: 0 -0 1 -4 5 -patch index: 1 -4 5 -8 9 -patch index: 2 -1 2 -5 6 -patch index: 3 -5 6 -9 10 -patch index: 4 -2 3 -6 7 -patch index: 5 -6 7 -10 11 + patch index: 0 + 0 1 + 4 5 + patch index: 1 + 4 5 + 8 9 + patch index: 2 + 1 2 + 5 6 + patch index: 3 + 5 6 + 9 10 + patch index: 4 + 2 3 + 6 7 + patch index: 5 + 6 7 + 10 11 This code results in the following output when the data layout is RowMajor: (NOTE: the set of patches is the same as in ColMajor, but are indexed differently). -patch index: 0 -0 1 -4 5 -patch index: 1 -1 2 -5 6 -patch index: 2 -2 3 -6 7 -patch index: 3 -4 5 -8 9 -patch index: 4 -5 6 -9 10 -patch index: 5 -6 7 -10 11 + patch index: 0 + 0 1 + 4 5 + patch index: 1 + 1 2 + 5 6 + patch index: 2 + 2 3 + 6 7 + patch index: 3 + 4 5 + 8 9 + patch index: 4 + 5 6 + 9 10 + patch index: 5 + 6 7 + 10 11 ### ` extract_image_patches(const Index patch_rows, const Index patch_cols, const Index row_stride, const Index col_stride, const PaddingType padding_type)` @@ -1736,28 +1736,30 @@ sizes: *) columns: 5 *) batch: 7 - Tensor tensor(2,3,5,7); - Tensor tensor_row_major = tensor.swap_layout(); + Tensor tensor(2,3,5,7); + Tensor tensor_row_major = tensor.swap_layout(); 2x2 image patches can be extracted and indexed using the following code: *) 2D patch: ColMajor (patch indexed by second-to-last dimension) - Tensor twod_patch; - twod_patch = tensor.extract_image_patches<2, 2>(); - // twod_patch.dimension(0) == 2 - // twod_patch.dimension(1) == 2 - // twod_patch.dimension(2) == 2 - // twod_patch.dimension(3) == 3*5 - // twod_patch.dimension(4) == 7 + + Tensor twod_patch; + twod_patch = tensor.extract_image_patches<2, 2>(); + // twod_patch.dimension(0) == 2 + // twod_patch.dimension(1) == 2 + // twod_patch.dimension(2) == 2 + // twod_patch.dimension(3) == 3*5 + // twod_patch.dimension(4) == 7 *) 2D patch: RowMajor (patch indexed by the second dimension) - Tensor twod_patch_row_major; - twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>(); - // twod_patch_row_major.dimension(0) == 7 - // twod_patch_row_major.dimension(1) == 3*5 - // twod_patch_row_major.dimension(2) == 2 - // twod_patch_row_major.dimension(3) == 2 - // twod_patch_row_major.dimension(4) == 2 + + Tensor twod_patch_row_major; + twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>(); + // twod_patch_row_major.dimension(0) == 7 + // twod_patch_row_major.dimension(1) == 3*5 + // twod_patch_row_major.dimension(2) == 2 + // twod_patch_row_major.dimension(3) == 2 + // twod_patch_row_major.dimension(4) == 2 ## Special Operations